IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v175y2024ics030441492400111x.html
   My bibliography  Save this article

Backward doubly stochastic differential equations and SPDEs with quadratic growth

Author

Listed:
  • Hu, Ying
  • Wen, Jiaqiang
  • Xiong, Jie

Abstract

This paper shows the nonlinear stochastic Feynman–Kac formula holds under quadratic growth. For this, we initiate the study of backward doubly stochastic differential equations (BDSDEs, for short) with quadratic growth. The existence, uniqueness, and comparison theorem for one-dimensional BDSDEs are proved when the generator f(t,Y,Z) grows in Z quadratically and the terminal value is bounded, by introducing innovative approaches. Furthermore, in this framework, we utilize BDSDEs to provide a probabilistic representation of solutions to semilinear stochastic partial differential equations (SPDEs, for short) in Sobolev spaces, and use it to prove the existence and uniqueness of such SPDEs, thereby extending the nonlinear stochastic Feynman–Kac formula for linear growth introduced by Pardoux and Peng (1994).

Suggested Citation

  • Hu, Ying & Wen, Jiaqiang & Xiong, Jie, 2024. "Backward doubly stochastic differential equations and SPDEs with quadratic growth," Stochastic Processes and their Applications, Elsevier, vol. 175(C).
  • Handle: RePEc:eee:spapps:v:175:y:2024:i:c:s030441492400111x
    DOI: 10.1016/j.spa.2024.104405
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030441492400111X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2024.104405?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buckdahn, Rainer & Ma, Jin, 2001. "Stochastic viscosity solutions for nonlinear stochastic partial differential equations. Part I," Stochastic Processes and their Applications, Elsevier, vol. 93(2), pages 181-204, June.
    2. V. Bally & A. Matoussi, 2001. "Weak Solutions for SPDEs and Backward Doubly Stochastic Differential Equations," Journal of Theoretical Probability, Springer, vol. 14(1), pages 125-164, January.
    3. Xing, Hao & Žitković, Gordan, 2018. "A class of globally solvable Markovian quadratic BSDE systems and applications," LSE Research Online Documents on Economics 73440, London School of Economics and Political Science, LSE Library.
    4. Tevzadze, Revaz, 2008. "Solvability of backward stochastic differential equations with quadratic growth," Stochastic Processes and their Applications, Elsevier, vol. 118(3), pages 503-515, March.
    5. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    6. Buckdahn, Rainer & Ma, Jin, 2001. "Stochastic viscosity solutions for nonlinear stochastic partial differential equations. Part II," Stochastic Processes and their Applications, Elsevier, vol. 93(2), pages 205-228, June.
    7. Hu, Ying & Tang, Shanjian, 2016. "Multi-dimensional backward stochastic differential equations of diagonally quadratic generators," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1066-1086.
    8. Marie-Amélie Morlais, 2009. "Quadratic BSDEs driven by a continuous martingale and applications to the utility maximization problem," Finance and Stochastics, Springer, vol. 13(1), pages 121-150, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nam, Kihun, 2021. "Locally Lipschitz BSDE driven by a continuous martingale a path-derivative approach," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 376-411.
    2. Hu, Ying & Tang, Shanjian & Wang, Falei, 2022. "Quadratic G-BSDEs with convex generators and unbounded terminal conditions," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 363-390.
    3. Luis Escauriaza & Daniel C. Schwarz & Hao Xing, 2020. "Radner equilibrium and systems of quadratic BSDEs with discontinuous generators," Papers 2008.03500, arXiv.org, revised May 2021.
    4. Hernández, Camilo, 2023. "On quadratic multidimensional type-I BSVIEs, infinite families of BSDEs and their applications," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 249-298.
    5. Hao, Tao & Wen, Jiaqiang & Xiong, Jie, 2022. "Solvability of a class of mean-field BSDEs with quadratic growth," Statistics & Probability Letters, Elsevier, vol. 191(C).
    6. Kihun Nam, 2019. "Global Well-posedness of Non-Markovian Multidimensional Superquadratic BSDE," Papers 1912.03692, arXiv.org, revised Jan 2022.
    7. Kim Weston, 2022. "Existence of an equilibrium with limited participation," Papers 2206.12399, arXiv.org.
    8. Antonis Papapantoleon & Dylan Possamai & Alexandros Saplaouras, 2016. "Existence and uniqueness results for BSDEs with jumps: the whole nine yards," Papers 1607.04214, arXiv.org, revised Nov 2018.
    9. Fujii, Masaaki & Takahashi, Akihiko, 2018. "Quadratic–exponential growth BSDEs with jumps and their Malliavin’s differentiability," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 2083-2130.
    10. Kupper, Michael & Luo, Peng & Tangpi, Ludovic, 2019. "Multidimensional Markovian FBSDEs with super-quadratic growth," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 902-923.
    11. Said Hamadène & Rui Mu, 2021. "Risk-Sensitive Nonzero-Sum Stochastic Differential Game with Unbounded Coefficients," Dynamic Games and Applications, Springer, vol. 11(1), pages 84-108, March.
    12. Jackson, Joe & Žitković, Gordan, 2022. "A characterization of solutions of quadratic BSDEs and a new approach to existence," Stochastic Processes and their Applications, Elsevier, vol. 147(C), pages 210-225.
    13. Hu, Yaozhong & Li, Juan & Mi, Chao, 2023. "BSDEs generated by fractional space-time noise and related SPDEs," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    14. Lionnet, Arnaud, 2014. "Some results on general quadratic reflected BSDEs driven by a continuous martingale," Stochastic Processes and their Applications, Elsevier, vol. 124(3), pages 1275-1302.
    15. Xing, Hao & Žitković, Gordan, 2018. "A class of globally solvable Markovian quadratic BSDE systems and applications," LSE Research Online Documents on Economics 73440, London School of Economics and Political Science, LSE Library.
    16. Yuyang Chen & Peng Luo, 2023. "Existence and Uniqueness of Solutions for Multi-dimensional Reflected Backward Stochastic Differential Equations with Diagonally Quadratic Generators," Journal of Theoretical Probability, Springer, vol. 36(3), pages 1698-1719, September.
    17. Matoussi, A. & Piozin, L. & Popier, A., 2017. "Stochastic partial differential equations with singular terminal condition," Stochastic Processes and their Applications, Elsevier, vol. 127(3), pages 831-876.
    18. Masaaki Fujii & Akihiko Takahashi, 2015. "Quadratic-exponential growth BSDEs with Jumps and their Malliavin's Differentiability," Papers 1512.05924, arXiv.org, revised Sep 2017.
    19. Jackson, Joe, 2023. "The reverse Hölder inequality for matrix-valued stochastic exponentials and applications to quadratic BSDE systems," Stochastic Processes and their Applications, Elsevier, vol. 160(C), pages 1-32.
    20. Marcel Nutz, 2011. "A Quasi-Sure Approach to the Control of Non-Markovian Stochastic Differential Equations," Papers 1106.3273, arXiv.org, revised May 2012.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:175:y:2024:i:c:s030441492400111x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.