IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v23y2010i3d10.1007_s10959-010-0275-x.html
   My bibliography  Save this article

Martingale Approximation and Optimality of Some Conditions for the Central Limit Theorem

Author

Listed:
  • Dalibor Volný

    (Université de Rouen)

Abstract

Let (X i ) be a stationary and ergodic Markov chain with kernel Q and f an L 2 function on its state space. If Q is a normal operator and f=(I−Q)1/2 g (which is equivalent to the convergence of $\sum_{n=1}^{\infty}\frac{\sum_{k=0}^{n-1}Q^{k}f}{n^{3/2}}$ in L 2), we have the central limit theorem [cf. (Derriennic and Lin in C.R. Acad. Sci. Paris, Sér. I 323:1053–1057, 1996; Gordin and Lifšic in Third Vilnius conference on probability and statistics, vol. 1, pp. 147–148, 1981)]. Without assuming normality of Q, the CLT is implied by the convergence of $\sum_{n=1}^{\infty}\frac{\|\sum_{k=0}^{n-1}Q^{k}f\|_{2}}{n^{3/2}}$ , in particular by $\|\sum_{k=0}^{n-1}Q^{k}f\|_{2}=o(\sqrt{n}/\log^{q}n)$ , q>1 by Maxwell and Woodroofe (Ann. Probab. 28:713–724, 2000) and Wu and Woodroofe (Ann. Probab. 32:1674–1690, 2004), respectively. We show that if Q is not normal and f∈(I−Q)1/2 L 2, or if the conditions of Maxwell and Woodroofe or of Wu and Woodroofe are weakened to $\sum_{n=1}^{\infty}c_{n}\frac{\|\sum_{k=0}^{n-1}Q^{k}f\|_{2}}{n^{3/2}}

Suggested Citation

  • Dalibor Volný, 2010. "Martingale Approximation and Optimality of Some Conditions for the Central Limit Theorem," Journal of Theoretical Probability, Springer, vol. 23(3), pages 888-903, September.
  • Handle: RePEc:spr:jotpro:v:23:y:2010:i:3:d:10.1007_s10959-010-0275-x
    DOI: 10.1007/s10959-010-0275-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-010-0275-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-010-0275-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Volný, Dalibor, 1993. "Approximating martingales and the central limit theorem for strictly stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 44(1), pages 41-74, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Wei Biao, 2009. "An asymptotic theory for sample covariances of Bernoulli shifts," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 453-467, February.
    2. Peligrad, Magda, 2020. "A new CLT for additive functionals of Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5695-5708.
    3. Jérôme Dedecker & Florence Merlevède & Dalibor Volný, 2007. "On the Weak Invariance Principle for Non-Adapted Sequences under Projective Criteria," Journal of Theoretical Probability, Springer, vol. 20(4), pages 971-1004, December.
    4. Lesigne, Emmanuel & Volný, Dalibor, 2001. "Large deviations for martingales," Stochastic Processes and their Applications, Elsevier, vol. 96(1), pages 143-159, November.
    5. Magda Peligrad & Hailin Sang, 2013. "Central Limit Theorem for Linear Processes with Infinite Variance," Journal of Theoretical Probability, Springer, vol. 26(1), pages 222-239, March.
    6. Yokoyama, Ryozo, 1995. "On the central limit theorem and law of the iterated logarithm for stationary processes with applications to linear processes," Stochastic Processes and their Applications, Elsevier, vol. 59(2), pages 343-351, October.
    7. Cuny, Christophe & Fan, Ai Hua, 2017. "Study of almost everywhere convergence of series by mean of martingale methods," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2725-2750.
    8. Dedecker, Jérôme & Merlevède, Florence, 2011. "Rates of convergence in the central limit theorem for linear statistics of martingale differences," Stochastic Processes and their Applications, Elsevier, vol. 121(5), pages 1013-1043, May.
    9. Dede, Sophie, 2009. "An empirical Central Limit Theorem in for stationary sequences," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3494-3515, October.
    10. Volný, Dalibor & Wang, Yizao, 2014. "An invariance principle for stationary random fields under Hannan’s condition," Stochastic Processes and their Applications, Elsevier, vol. 124(12), pages 4012-4029.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:23:y:2010:i:3:d:10.1007_s10959-010-0275-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.