IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v10y1997i2d10.1023_a1022620818679.html
   My bibliography  Save this article

Least Absolute Deviation Estimation for Regression with ARMA Errors

Author

Listed:
  • Richard A. Davis

    (Colorado State University)

  • William T. M. Dunsmuir

    (University of New South Wales)

Abstract

The asymptotic normality for least absolute deviation estimates of the parameters in a linear regression model with autoregressive moving average errors is established under very general conditions. The method of proof is based on a functional limit theorem for the LAD objective function.

Suggested Citation

  • Richard A. Davis & William T. M. Dunsmuir, 1997. "Least Absolute Deviation Estimation for Regression with ARMA Errors," Journal of Theoretical Probability, Springer, vol. 10(2), pages 481-497, April.
  • Handle: RePEc:spr:jotpro:v:10:y:1997:i:2:d:10.1023_a:1022620818679
    DOI: 10.1023/A:1022620818679
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1022620818679
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1022620818679?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William T. M. Dunsmuir & Nancy M. Spencer, 1991. "Strong Consistency And Asymptotic Normality Of /1 Estimates Of The Autoregressive Moving‐Average Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 12(2), pages 95-104, March.
    2. Davis, Richard A. & Knight, Keith & Liu, Jian, 1992. "M-estimation for autoregressions with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 40(1), pages 145-180, February.
    3. Davis, Richard A. & Dunsmuir, William T.M., 1996. "Maximum Likelihood Estimation for MA(1) Processes with a Root on or near the Unit Circle," Econometric Theory, Cambridge University Press, vol. 12(1), pages 1-29, March.
    4. Davis, Richard A., 1996. "Gauss-Newton and M-estimation for ARMA processes with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 63(1), pages 75-95, October.
    5. Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(2), pages 186-199, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bardet, Jean-Marc, 2023. "Laplace’s method and BIC model selection for least absolute value criterion," Statistics & Probability Letters, Elsevier, vol. 195(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davis, Richard A. & Mikosch, Thomas, 1998. "Gaussian likelihood-based inference for non-invertible MA(1) processes with SS noise," Stochastic Processes and their Applications, Elsevier, vol. 77(1), pages 99-122, September.
    2. Xinghui Wang & Wenjing Geng & Ruidong Han & Qifa Xu, 2023. "Asymptotic Properties of the M-estimation for an AR(1) Process with a General Autoregressive Coefficient," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-23, March.
    3. Ngai Chan & Rongmao Zhang, 2009. "M-estimation in nonparametric regression under strong dependence and infinite variance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(2), pages 391-411, June.
    4. Mohamed El Ghourabi & Christian Francq & Fedya Telmoudi, 2016. "Consistent Estimation of the Value at Risk When the Error Distribution of the Volatility Model is Misspecified," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 46-76, January.
    5. Rongning Wu & Richard A. Davis, 2010. "Least absolute deviation estimation for general autoregressive moving average time‐series models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(2), pages 98-112, March.
    6. Chaohua Dong & Jiti Gao & Bin Peng & Yundong Tu, 2021. "Multiple-index Nonstationary Time Series Models: Robust Estimation Theory and Practice," Papers 2111.02023, arXiv.org.
    7. Benjamin Poignard, 2020. "Asymptotic theory of the adaptive Sparse Group Lasso," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 297-328, February.
    8. D. M. Mahinda Samarakoon & Keith Knight, 2009. "A Note on Unit Root Tests with Infinite Variance Noise," Econometric Reviews, Taylor & Francis Journals, vol. 28(4), pages 314-334.
    9. Xinghui Wang & Shuhe Hu, 2017. "Asymptotics of self-weighted M-estimators for autoregressive models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(1), pages 83-92, January.
    10. Chaohua Dong & Jiti Gao & Bin Peng & Yundong Tu, 2023. "Robust M-Estimation for Additive Single-Index Cointegrating Time Series Models," Monash Econometrics and Business Statistics Working Papers 2/23, Monash University, Department of Econometrics and Business Statistics.
    11. Zhou, Zhiyong & Lin, Zhengyan, 2014. "Asymptotic theory for LAD estimation of moderate deviations from a unit root," Statistics & Probability Letters, Elsevier, vol. 90(C), pages 25-32.
    12. Francq, Christian & Zakoïan, Jean-Michel, 2015. "Risk-parameter estimation in volatility models," Journal of Econometrics, Elsevier, vol. 184(1), pages 158-173.
    13. Ke Zhu & Shiqing Ling, 2015. "LADE-Based Inference for ARMA Models With Unspecified and Heavy-Tailed Heteroscedastic Noises," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 784-794, June.
    14. Davis, Richard A. & Song, Li, 2012. "Functional convergence of stochastic integrals with application to statistical inference," Stochastic Processes and their Applications, Elsevier, vol. 122(3), pages 725-757.
    15. Chaohua Dong & Jiti Gao & Bin Peng & Yundong Tu, 2021. "Multiple-index Nonstationary Time Series Models: Robust Estimation Theory and Practice," Monash Econometrics and Business Statistics Working Papers 18/21, Monash University, Department of Econometrics and Business Statistics.
    16. Nannan Ma & Hailin Sang & Guangyu Yang, 2023. "Least absolute deviation estimation for AR(1) processes with roots close to unity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(5), pages 799-832, October.
    17. Bouhaddioui, Chafik & Ghoudi, Kilani, 2012. "Empirical processes for infinite variance autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 319-335.
    18. Serguei Zernov & Victoria Zindle-Walsh & John Galbraith, 2006. "Asymptotics For Estimation Of Truncated Infinite-Dimensional Quantile Regressions," Departmental Working Papers 2006-16, McGill University, Department of Economics.
    19. Rongning Wu, 2013. "M-estimation for general ARMA Processes with Infinite Variance," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 571-591, September.
    20. Zernov, Serguei & Zinde-Walsh, Victoria & Galbraith, John W., 2009. "Asymptotics for estimation of quantile regressions with truncated infinite-dimensional processes," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 497-508, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:10:y:1997:i:2:d:10.1023_a:1022620818679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.