IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v31y2010i2p98-112.html
   My bibliography  Save this article

Least absolute deviation estimation for general autoregressive moving average time‐series models

Author

Listed:
  • Rongning Wu
  • Richard A. Davis

Abstract

We study least absolute deviation (LAD) estimation for general autoregressive moving average time‐series models that may be noncausal, noninvertible or both. For ARMA models with Gaussian noise, causality and invertibility are assumed for the parameterization to be identifiable. The assumptions, however, are not required for models with non‐Gaussian noise, and hence are removed in our study. We derive a functional limit theorem for random processes based on an LAD objective function, and establish the consistency and asymptotic normality of the LAD estimator. The performance of the estimator is evaluated via simulation and compared with the asymptotic theory. Application to real data is also provided.

Suggested Citation

  • Rongning Wu & Richard A. Davis, 2010. "Least absolute deviation estimation for general autoregressive moving average time‐series models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(2), pages 98-112, March.
  • Handle: RePEc:bla:jtsera:v:31:y:2010:i:2:p:98-112
    DOI: 10.1111/j.1467-9892.2009.00648.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9892.2009.00648.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9892.2009.00648.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrews, Beth & Davis, Richard A. & Jay Breidt, F., 2006. "Maximum likelihood estimation for all-pass time series models," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1638-1659, August.
    2. Davis, Richard A. & Knight, Keith & Liu, Jian, 1992. "M-estimation for autoregressions with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 40(1), pages 145-180, February.
    3. Pan, Jiazhu & Wang, Hui & Yao, Qiwei, 2007. "Weighted Least Absolute Deviations Estimation For Arma Models With Infinite Variance," Econometric Theory, Cambridge University Press, vol. 23(5), pages 852-879, October.
    4. Pan, Jiazhu & Wang, Hui & Yao, Qiwei, 2007. "Weighted least absolute deviations estimation for ARMA models with infinite variance," LSE Research Online Documents on Economics 5405, London School of Economics and Political Science, LSE Library.
    5. Lii, Keh-Shin & Rosenblatt, Murray, 1992. "An approximate maximum likelihood estimation for non-Gaussian non-minimum phase moving average processes," Journal of Multivariate Analysis, Elsevier, vol. 43(2), pages 272-299, November.
    6. Davis, Richard A., 1996. "Gauss-Newton and M-estimation for ARMA processes with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 63(1), pages 75-95, October.
    7. Jian Huang & Yudi Pawitan, 2000. "Quasi‐likelihood Estimation of Non‐invertible Moving Average Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 689-702, December.
    8. Breid, F. Jay & Davis, Richard A. & Lh, Keh-Shin & Rosenblatt, Murray, 1991. "Maximum likelihood estimation for noncausal autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 36(2), pages 175-198, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rongning Wu, 2013. "M-estimation for general ARMA Processes with Infinite Variance," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 571-591, September.
    2. Hecq, A.W. & Lieb, L.M. & Telg, J.M.A., 2015. "Identification of Mixed Causal-Noncausal Models : How Fat Should We Go?," Research Memorandum 035, Maastricht University, Graduate School of Business and Economics (GSBE).
    3. Ke Zhu & Shiqing Ling, 2015. "LADE-Based Inference for ARMA Models With Unspecified and Heavy-Tailed Heteroscedastic Noises," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 784-794, June.
    4. Pentti Saikkonen & Rickard Sandberg, 2016. "Testing for a Unit Root in Noncausal Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 99-125, January.
    5. Meitz, Mika & Saikkonen, Pentti, 2013. "Maximum likelihood estimation of a noninvertible ARMA model with autoregressive conditional heteroskedasticity," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 227-255.
    6. Markku Lanne & Mika Meitz & Pentti Saikkonen, 2012. "Testing for Predictability in a Noninvertible ARMA Model," Koç University-TUSIAD Economic Research Forum Working Papers 1225, Koc University-TUSIAD Economic Research Forum.
    7. Frédérique Bec & Heino Bohn Nielsen & Sarra Saïdi, 2020. "Mixed Causal–Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1413-1428, December.
    8. Jean-Baptiste MICHAU, 2019. "Helicopter Drops of Money under Secular Stagnation," Working Papers 2019-10, Center for Research in Economics and Statistics.
    9. Zhu, Ke & Ling, Shiqing, 2013. "Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models," MPRA Paper 51509, University Library of Munich, Germany.
    10. Hecq, Alain & Issler, João Victor & Telg, Sean, 2017. "Mixed Causal-Noncausal Autoregressions with Strictly Exogenous Regressors," MPRA Paper 80767, University Library of Munich, Germany.
    11. Lanne Markku & Saikkonen Pentti, 2011. "Noncausal Autoregressions for Economic Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 3(3), pages 1-32, October.
    12. Wu, Rongning, 2014. "Least absolute deviation estimation for general fractionally integrated autoregressive moving average time series models," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 69-76.
    13. Alain Hecq & Daniel Velasquez-Gaviria, 2023. "Spectral identification and estimation of mixed causal-noncausal invertible-noninvertible models," Papers 2310.19543, arXiv.org.
    14. Kramkov, Viacheslav & Maksimov, Andrey, 2020. "Loan market markups and noncausal autoregressions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 60, pages 48-69.
    15. Nyholm, Juho, 2017. "Residual-based diagnostic tests for noninvertible ARMA models," MPRA Paper 81033, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rongning Wu, 2013. "M-estimation for general ARMA Processes with Infinite Variance," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 571-591, September.
    2. Xinghui Wang & Shuhe Hu, 2017. "Asymptotics of self-weighted M-estimators for autoregressive models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(1), pages 83-92, January.
    3. Andrews, Beth & Davis, Richard A. & Jay Breidt, F., 2006. "Maximum likelihood estimation for all-pass time series models," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1638-1659, August.
    4. Ke Zhu & Shiqing Ling, 2015. "LADE-Based Inference for ARMA Models With Unspecified and Heavy-Tailed Heteroscedastic Noises," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 784-794, June.
    5. Meitz, Mika & Saikkonen, Pentti, 2013. "Maximum likelihood estimation of a noninvertible ARMA model with autoregressive conditional heteroskedasticity," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 227-255.
    6. Bouhaddioui, Chafik & Ghoudi, Kilani, 2012. "Empirical processes for infinite variance autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 319-335.
    7. Hecq, A.W. & Lieb, L.M. & Telg, J.M.A., 2015. "Identification of Mixed Causal-Noncausal Models : How Fat Should We Go?," Research Memorandum 035, Maastricht University, Graduate School of Business and Economics (GSBE).
    8. Alain Hecq & Daniel Velasquez-Gaviria, 2022. "Spectral estimation for mixed causal-noncausal autoregressive models," Papers 2211.13830, arXiv.org.
    9. Pentti Saikkonen & Rickard Sandberg, 2016. "Testing for a Unit Root in Noncausal Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 99-125, January.
    10. Zhu, Ke & Ling, Shiqing, 2013. "Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models," MPRA Paper 51509, University Library of Munich, Germany.
    11. Frédérique Bec & Heino Bohn Nielsen & Sarra Saïdi, 2020. "Mixed Causal–Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1413-1428, December.
    12. Alain Hecq & Joao Victor Issler & Sean Telg, 2020. "Mixed causal–noncausal autoregressions with exogenous regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(3), pages 328-343, April.
    13. Zhang, Xingfa & Zhang, Rongmao & Li, Yuan & Ling, Shiqing, 2022. "LADE-based inferences for autoregressive models with heavy-tailed G-GARCH(1, 1) noise," Journal of Econometrics, Elsevier, vol. 227(1), pages 228-240.
    14. Pentti Saikkonen & Rickard Sandberg, 2016. "Testing for a Unit Root in Noncausal Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 99-125, January.
    15. Nikolay Gospodinov & Serena Ng, 2015. "Minimum Distance Estimation of Possibly Noninvertible Moving Average Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 403-417, July.
    16. Lanne, Markku & Luoto, Jani & Saikkonen, Pentti, 2012. "Optimal forecasting of noncausal autoregressive time series," International Journal of Forecasting, Elsevier, vol. 28(3), pages 623-631.
    17. Francesco Giancaterini & Alain Hecq, 2020. "Inference in mixed causal and noncausal models with generalized Student's t-distributions," Papers 2012.01888, arXiv.org, revised Nov 2022.
    18. Chi Yao & Wei Yu & Xuejun Wang, 2023. "Strong Consistency for the Conditional Self-weighted M Estimator of GRCA(p) Models," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-21, March.
    19. Davis, Richard A. & Mikosch, Thomas, 1998. "Gaussian likelihood-based inference for non-invertible MA(1) processes with SS noise," Stochastic Processes and their Applications, Elsevier, vol. 77(1), pages 99-122, September.
    20. Jean-Baptiste MICHAU, 2019. "Helicopter Drops of Money under Secular Stagnation," Working Papers 2019-10, Center for Research in Economics and Statistics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:31:y:2010:i:2:p:98-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.