IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v035i01.html
   My bibliography  Save this article

sphet: Spatial Models with Heteroskedastic Innovations in R

Author

Listed:
  • Piras, Gianfranco

Abstract

sphet is a package for estimating and testing spatial models with heteroskedastic innovations. We implement recent generalized moments estimators and semiparametric methods for the estimation of the coefficients variance-covariance matrix. This paper is a general description of sphet and all functionalities are illustrated by application to the popular Boston housing dataset. The package in its current version is limited to the estimators based on Arraiz, Drukker, Kelejian, and Prucha (2010); Kelejian and Prucha (2007, 2010). The estimation functions implemented in sphet are able to deal with virtually any sample size.

Suggested Citation

  • Piras, Gianfranco, 2010. "sphet: Spatial Models with Heteroskedastic Innovations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 35(i01).
  • Handle: RePEc:jss:jstsof:v:035:i01
    DOI: http://hdl.handle.net/10.18637/jss.v035.i01
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v035i01/v35i01.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v035i01/sphet_1.0-0.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v035i01/v35i01.R
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v035i01/boston_nn_10.GWT
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v035i01/dist_100.GWT
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v035.i01?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Luc Anselin & Nancy Lozano-Gracia, 2009. "Errors in variables and spatial effects in hedonic house price models of ambient air quality," Studies in Empirical Economics, in: Giuseppe Arbia & Badi H. Baltagi (ed.), Spatial Econometrics, pages 5-34, Springer.
    2. Conley, Timothy G. & Molinari, Francesca, 2007. "Spatial correlation robust inference with errors in location or distance," Journal of Econometrics, Elsevier, vol. 140(1), pages 76-96, September.
    3. Kelejian, Harry H. & Prucha, Ingmar R., 2007. "HAC estimation in a spatial framework," Journal of Econometrics, Elsevier, vol. 140(1), pages 131-154, September.
    4. Irani Arraiz & David M. Drukker & Harry H. Kelejian & Ingmar R. Prucha, 2010. "A Spatial Cliff‐Ord‐Type Model With Heteroskedastic Innovations: Small And Large Sample Results," Journal of Regional Science, Wiley Blackwell, vol. 50(2), pages 592-614, May.
    5. Lee, Lung-Fei, 2002. "Consistency And Efficiency Of Least Squares Estimation For Mixed Regressive, Spatial Autoregressive Models," Econometric Theory, Cambridge University Press, vol. 18(2), pages 252-277, April.
    6. Harrison, David Jr. & Rubinfeld, Daniel L., 1978. "Hedonic housing prices and the demand for clean air," Journal of Environmental Economics and Management, Elsevier, vol. 5(1), pages 81-102, March.
    7. Baltagi, Badi H. & Egger, Peter & Pfaffermayr, Michael, 2008. "Estimating regional trade agreement effects on FDI in an interdependent world," Journal of Econometrics, Elsevier, vol. 145(1-2), pages 194-208, July.
    8. Zeileis, Achim, 2004. "Econometric Computing with HC and HAC Covariance Matrix Estimators," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i10).
    9. Pace, R. Kelley & LeSage, James P., 2004. "Chebyshev approximation of log-determinants of spatial weight matrices," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 179-196, March.
    10. Conley, T. G., 1999. "GMM estimation with cross sectional dependence," Journal of Econometrics, Elsevier, vol. 92(1), pages 1-45, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:jss:jstsof:35:i01 is not listed on IDEAS
    2. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    3. repec:asg:wpaper:1013 is not listed on IDEAS
    4. Gibbons, Steve & Overman, Henry G. & Patacchini, Eleonora, 2015. "Spatial Methods," Handbook of Regional and Urban Economics, in: Gilles Duranton & J. V. Henderson & William C. Strange (ed.), Handbook of Regional and Urban Economics, edition 1, volume 5, chapter 0, pages 115-168, Elsevier.
    5. Lambert, Dayton M. & Florax, Raymond J.G.M. & Cho, Seong-Hoon, 2008. "Bandwidth Selection For Spatial Hac And Other Robust Covariance Estimators," Working papers 44258, Purdue University, Department of Agricultural Economics.
    6. Gianfranco Piras & Paolo Postiglione & Patricio Aroca, 2012. "Specialization, R&D and productivity growth: evidence from EU regions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 49(1), pages 35-51, August.
    7. Giuseppe Arbia, 2011. "A Lustrum of SEA: Recent Research Trends Following the Creation of the Spatial Econometrics Association (2007--2011)," Spatial Economic Analysis, Taylor & Francis Journals, vol. 6(4), pages 377-395, July.
    8. repec:asg:wpaper:1006 is not listed on IDEAS
    9. Lee, Jungyoon & Robinson, Peter M., 2016. "Series estimation under cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 190(1), pages 1-17.
    10. Jungyoon Lee & Peter Robinson, 2016. "Series estimation under cross-sectional dependence," LSE Research Online Documents on Economics 63380, London School of Economics and Political Science, LSE Library.
    11. Daniel C. Monchuk & Dermot J. Hayes & John A. Miranowski & Dayton M. Lambert, 2011. "Inference Based On Alternative Bootstrapping Methods In Spatial Models With An Application To County Income Growth In The United States," Journal of Regional Science, Wiley Blackwell, vol. 51(5), pages 880-896, December.
    12. Arnab Bhattacharjee & Sean Holly, 2013. "Understanding Interactions in Social Networks and Committees," Spatial Economic Analysis, Taylor & Francis Journals, vol. 8(1), pages 23-53, March.
    13. Cuicui Lu & Weining Wang & Jeffrey M. Wooldridge, 2018. "Using generalized estimating equations to estimate nonlinear models with spatial data," Papers 1810.05855, arXiv.org.
    14. repec:asg:wpaper:1045 is not listed on IDEAS
    15. Natalia Bailey & Sean Holly & M. Hashem Pesaran, 2016. "A Two‐Stage Approach to Spatio‐Temporal Analysis with Strong and Weak Cross‐Sectional Dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 249-280, January.
    16. Dayton M. Lambert & Kevin T. McNamara, 2009. "Location determinants of food manufacturers in the United States, 2000–2004: are nonmetropolitan counties competitive?," Agricultural Economics, International Association of Agricultural Economists, vol. 40(6), pages 617-630, November.
    17. Gupta, Abhimanyu, 2018. "Autoregressive spatial spectral estimates," Journal of Econometrics, Elsevier, vol. 203(1), pages 80-95.
    18. Bivand, Roger & Piras, Gianfranco, 2015. "Comparing Implementations of Estimation Methods for Spatial Econometrics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i18).
    19. repec:rri:wpaper:201301 is not listed on IDEAS
    20. Kojevnikov, Denis & Marmer, Vadim & Song, Kyungchul, 2021. "Limit theorems for network dependent random variables," Journal of Econometrics, Elsevier, vol. 222(2), pages 882-908.
    21. Min Seong Kim, 2021. "Robust Inference for Diffusion-Index Forecasts with Cross-Sectionally Dependent Data," Working papers 2021-04, University of Connecticut, Department of Economics.
    22. Pesaran, M. Hashem & Tosetti, Elisa, 2011. "Large panels with common factors and spatial correlation," Journal of Econometrics, Elsevier, vol. 161(2), pages 182-202, April.
    23. Arnab Bhattacharjee & Sean Holly, 2011. "Structural interactions in spatial panels," Empirical Economics, Springer, vol. 40(1), pages 69-94, February.
    24. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    25. Pede, Valerien O. & Florax, Raymond J.G.M. & Lambert, Dayton M., 2014. "Spatial econometric STAR models: Lagrange multiplier tests, Monte Carlo simulations and an empirical application," Regional Science and Urban Economics, Elsevier, vol. 49(C), pages 118-128.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:035:i01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.