IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v179y2018i1d10.1007_s10957-018-1319-0.html
   My bibliography  Save this article

A Ky Fan Minimax Inequality for Quasiequilibria on Finite-Dimensional Spaces

Author

Listed:
  • Marco Castellani

    (Computer Science and Mathematics)

  • Massimiliano Giuli

    (Computer Science and Mathematics)

  • Massimo Pappalardo

    (University of Pisa)

Abstract

Several results concerning existence of solutions of a quasiequilibrium problem defined on a finite-dimensional space are established. The proof of the first result is based on a Michael selection theorem for lower semicontinuous set-valued maps which holds in finite-dimensional spaces. Furthermore, this result allows one to locate the position of a solution. Sufficient conditions, which are easier to verify, may be obtained by imposing restrictions either on the domain or on the bifunction. These facts make it possible to yield various existence results which reduce to the well-known Ky Fan minimax inequality when the constraint map is constant and the quasiequilibrium problem coincides with an equilibrium problem. Lastly, a comparison with other results from the literature is discussed.

Suggested Citation

  • Marco Castellani & Massimiliano Giuli & Massimo Pappalardo, 2018. "A Ky Fan Minimax Inequality for Quasiequilibria on Finite-Dimensional Spaces," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 53-64, October.
  • Handle: RePEc:spr:joptap:v:179:y:2018:i:1:d:10.1007_s10957-018-1319-0
    DOI: 10.1007/s10957-018-1319-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-018-1319-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-018-1319-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Castellani & M. Giuli, 2016. "Approximate solutions of quasiequilibrium problems in Banach spaces," Journal of Global Optimization, Springer, vol. 64(3), pages 615-620, March.
    2. Bigi, Giancarlo & Castellani, Marco & Pappalardo, Massimo & Passacantando, Mauro, 2013. "Existence and solution methods for equilibria," European Journal of Operational Research, Elsevier, vol. 227(1), pages 1-11.
    3. M. Castellani & M. Giuli, 2016. "Approximate solutions of quasiequilibrium problems in Banach spaces," Journal of Global Optimization, Springer, vol. 64(3), pages 615-620, March.
    4. Boualem Alleche & Vicenţiu D. Rădulescu, 2016. "Solutions and Approximate Solutions of Quasi-Equilibrium Problems in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 629-649, August.
    5. Bergstrom, Theodore C. & Parks, Robert P. & Rader, Trout, 1976. "Preferences which have open graphs," Journal of Mathematical Economics, Elsevier, vol. 3(3), pages 265-268, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John Cotrina & Javier Zúñiga, 2018. "Time-Dependent Generalized Nash Equilibrium Problem," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 1054-1064, December.
    2. M. Bianchi & G. Kassay & R. Pini, 2022. "Brezis pseudomonotone bifunctions and quasi equilibrium problems via penalization," Journal of Global Optimization, Springer, vol. 82(3), pages 483-498, March.
    3. John Cotrina & Michel Théra & Javier Zúñiga, 2020. "An Existence Result for Quasi-equilibrium Problems via Ekeland’s Variational Principle," Journal of Optimization Theory and Applications, Springer, vol. 187(2), pages 336-355, November.
    4. Marco Castellani & Massimiliano Giuli, 2021. "A Generalized Ky Fan Minimax Inequality on Finite-Dimensional Spaces," Journal of Optimization Theory and Applications, Springer, vol. 190(2), pages 343-357, August.
    5. Domenico Scopelliti, 2022. "On a Class of Multistage Stochastic Hierarchical Problems," Mathematics, MDPI, vol. 10(21), pages 1-13, October.
    6. Scalzo, Vincenzo, 2020. "Doubly Strong Equilibrium," MPRA Paper 99329, University Library of Munich, Germany.
    7. M. Castellani & M. Giuli, 2019. "A coercivity condition for nonmonotone quasiequilibria on finite-dimensional spaces," Journal of Global Optimization, Springer, vol. 75(1), pages 163-176, September.
    8. John Cotrina & Javier Zúñiga, 2019. "Quasi-equilibrium problems with non-self constraint map," Journal of Global Optimization, Springer, vol. 75(1), pages 177-197, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carmen Herrero Blanco & José Manuel Gutiérrez Díez, 1990. "Lagrangean conditions for general optimization problems with applications to consumer theory," Working Papers. Serie AD 1990-02, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    2. Boualem Alleche & Vicenţiu D. Rădulescu, 2017. "Further on Set-Valued Equilibrium Problems and Applications to Browder Variational Inclusions," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 39-58, October.
    3. Giancarlo Bigi & Massimo Pappalardo & Mauro Passacantando, 2016. "Optimization Tools for Solving Equilibrium Problems with Nonsmooth Data," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 887-905, December.
    4. Gerasímou, Georgios, 2010. "Consumer theory with bounded rational preferences," Journal of Mathematical Economics, Elsevier, vol. 46(5), pages 708-714, September.
    5. Kelsey, David & Yalcin, Erkan, 2007. "The arbitrage pricing theorem with incomplete preferences," Mathematical Social Sciences, Elsevier, vol. 54(1), pages 90-105, July.
    6. Tian, Guoqiang, 1991. "Generalized quasi-variational-like inequality problem," MPRA Paper 41219, University Library of Munich, Germany, revised 26 May 1992.
    7. Toyasaki, Fuminori & Daniele, Patrizia & Wakolbinger, Tina, 2014. "A variational inequality formulation of equilibrium models for end-of-life products with nonlinear constraints," European Journal of Operational Research, Elsevier, vol. 236(1), pages 340-350.
    8. M. Ali Khan & Metin Uyanık, 2021. "Topological connectedness and behavioral assumptions on preferences: a two-way relationship," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(2), pages 411-460, March.
    9. Thidaporn Seangwattana & Somyot Plubtieng & Kanokwan Sitthithakerngkiet, 2021. "A new linesearch iterative scheme for finding a common solution of split equilibrium and fixed point problems," Indian Journal of Pure and Applied Mathematics, Springer, vol. 52(2), pages 614-628, June.
    10. Pineda, Salvador & Boomsma, Trine K. & Wogrin, Sonja, 2018. "Renewable generation expansion under different support schemes: A stochastic equilibrium approach," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1086-1099.
    11. Cholamjiak, Watcharaporn & Dutta, Hemen & Yambangwai, Damrongsak, 2021. "Image restorations using an inertial parallel hybrid algorithm with Armijo linesearch for nonmonotone equilibrium problems," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    12. M. Bianchi & G. Kassay & R. Pini, 2022. "Brezis pseudomonotone bifunctions and quasi equilibrium problems via penalization," Journal of Global Optimization, Springer, vol. 82(3), pages 483-498, March.
    13. Habib ur Rehman & Wiyada Kumam & Kamonrat Sombut, 2022. "Inertial Modification Using Self-Adaptive Subgradient Extragradient Techniques for Equilibrium Programming Applied to Variational Inequalities and Fixed-Point Problems," Mathematics, MDPI, vol. 10(10), pages 1-29, May.
    14. Massimo Pappalardo & Giandomenico Mastroeni & Mauro Passacantando, 2016. "Merit functions: a bridge between optimization and equilibria," Annals of Operations Research, Springer, vol. 240(1), pages 271-299, May.
    15. Tian, Guoqiang & Zhou, Jianxin, 1995. "Transfer continuities, generalizations of the Weierstrass and maximum theorems: A full characterization," Journal of Mathematical Economics, Elsevier, vol. 24(3), pages 281-303.
    16. Mostafa Nasri & Luiz Carlos Matioli & Euda Mara Silva Ferreira & Adilson Silveira, 2016. "Implementation of Augmented Lagrangian Methods for Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 971-991, March.
    17. Riccardi, R. & Bonenti, F. & Allevi, E. & Avanzi, C. & Gnudi, A., 2015. "The steel industry: A mathematical model under environmental regulations," European Journal of Operational Research, Elsevier, vol. 242(3), pages 1017-1027.
    18. Yekini Shehu & Lulu Liu & Xiaolong Qin & Qiao-Li Dong, 2022. "Reflected Iterative Method for Non-Monotone Equilibrium Problems with Applications to Nash-Cournot Equilibrium Models," Networks and Spatial Economics, Springer, vol. 22(1), pages 153-180, March.
    19. Monique Florenzano, 2009. "Walras-Lindahl-Wicksell: What equilibrium concept for public goods provision," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00531434, HAL.
    20. Uyanik, Metin & Khan, M. Ali, 2022. "The continuity postulate in economic theory: A deconstruction and an integration," Journal of Mathematical Economics, Elsevier, vol. 101(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:179:y:2018:i:1:d:10.1007_s10957-018-1319-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.