IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v203y2024i1d10.1007_s10957-024-02540-0.html
   My bibliography  Save this article

Risk-Averse Optimal Control Model Under Uncertainty and Its Modified Progressive Hedging Algorithm

Author

Listed:
  • Jie Sun

    (Curtin University)

  • Di Wu

    (Shanghai University of Engineering Science)

  • Changjun Yu

    (Shanghai University)

Abstract

It is of practical importance to incorporate a risk-averse objective in an optimal control problem under uncertainty. By leveraging the dual relationship between risk and regret measures, the risk-averse optimal control problem can be equivalently transformed into an optimal control problem with nonanticipativity constraints and expectation objective function. A modified progressive hedging algorithm is then proposed to solve the transformed problem, in which the descent conditions are enforced to ensure global convergence of the algorithm. Numerical results of three different types of problems are presented to show the applicability and effectiveness of the modified progressive hedging algorithm.

Suggested Citation

  • Jie Sun & Di Wu & Changjun Yu, 2024. "Risk-Averse Optimal Control Model Under Uncertainty and Its Modified Progressive Hedging Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 960-984, October.
  • Handle: RePEc:spr:joptap:v:203:y:2024:i:1:d:10.1007_s10957-024-02540-0
    DOI: 10.1007/s10957-024-02540-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02540-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02540-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ang, James & Meng, Fanwen & Sun, Jie, 2014. "Two-stage stochastic linear programs with incomplete information on uncertainty," European Journal of Operational Research, Elsevier, vol. 233(1), pages 16-22.
    2. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    3. Min Zhang & Liangshao Hou & Jie Sun & Ailing Yan, 2020. "A Model of Multistage Risk-Averse Stochastic Optimization and its Solution by Scenario-Based Decomposition Algorithms," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 37(04), pages 1-21, August.
    4. Jie Sun & Xinmin Yang & Qiang Yao & Min Zhang, 2017. "Risk Minimization, Regret Minimization and Progressive Hedging Algorithms," Papers 1705.00340, arXiv.org, revised Jun 2020.
    5. Marcus Ang & Jie Sun & Qiang Yao, 2018. "On the dual representation of coherent risk measures," Annals of Operations Research, Springer, vol. 262(1), pages 29-46, March.
    6. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.
    2. Haodong Yu & Jie Sun & Yanjun Wang, 2021. "A time-consistent Benders decomposition method for multistage distributionally robust stochastic optimization with a scenario tree structure," Computational Optimization and Applications, Springer, vol. 79(1), pages 67-99, May.
    3. João Claro & Jorge Sousa, 2010. "A multiobjective metaheuristic for a mean-risk static stochastic knapsack problem," Computational Optimization and Applications, Springer, vol. 46(3), pages 427-450, July.
    4. Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.
    5. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, September.
    6. Gauvin, Charles & Delage, Erick & Gendreau, Michel, 2017. "Decision rule approximations for the risk averse reservoir management problem," European Journal of Operational Research, Elsevier, vol. 261(1), pages 317-336.
    7. Martin Šmíd & Václav Kozmík, 2024. "Approximation of multistage stochastic programming problems by smoothed quantization," Review of Managerial Science, Springer, vol. 18(7), pages 2079-2114, July.
    8. Luis Rios & Nikolaos Sahinidis, 2010. "Portfolio optimization for wealth-dependent risk preferences," Annals of Operations Research, Springer, vol. 177(1), pages 63-90, June.
    9. Ling, Aifan & Sun, Jie & Xiu, Naihua & Yang, Xiaoguang, 2017. "Robust two-stage stochastic linear optimization with risk aversion," European Journal of Operational Research, Elsevier, vol. 256(1), pages 215-229.
    10. Gabriele Torri & Rosella Giacometti & Darinka Dentcheva & Svetlozar T. Rachev & W. Brent Lindquist, 2023. "ESG-coherent risk measures for sustainable investing," Papers 2309.05866, arXiv.org.
    11. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    12. Dominique Guégan & Wayne Tarrant, 2012. "On the necessity of five risk measures," Annals of Finance, Springer, vol. 8(4), pages 533-552, November.
    13. Rockafellar, R.T. & Royset, J.O., 2010. "On buffered failure probability in design and optimization of structures," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 499-510.
    14. Li, Bo & Hou, Peng-Wen & Chen, Ping & Li, Qing-Hua, 2016. "Pricing strategy and coordination in a dual channel supply chain with a risk-averse retailer," International Journal of Production Economics, Elsevier, vol. 178(C), pages 154-168.
    15. Kull, Andreas, 2009. "Sharing Risk – An Economic Perspective," ASTIN Bulletin, Cambridge University Press, vol. 39(2), pages 591-613, November.
    16. Mínguez, R. & Conejo, A.J. & García-Bertrand, R., 2011. "Reliability and decomposition techniques to solve certain class of stochastic programming problems," Reliability Engineering and System Safety, Elsevier, vol. 96(2), pages 314-323.
    17. Jia Liu & Cuixia Li, 2023. "Dynamic Game Analysis on Cooperative Advertising Strategy in a Manufacturer-Led Supply Chain with Risk Aversion," Mathematics, MDPI, vol. 11(3), pages 1-24, January.
    18. Curtis, John & Lynch, Muireann Á. & Zubiate, Laura, 2016. "The impact of the North Atlantic Oscillation on electricity markets: A case study on Ireland," Energy Economics, Elsevier, vol. 58(C), pages 186-198.
    19. Brian Tomlin & Yimin Wang, 2005. "On the Value of Mix Flexibility and Dual Sourcing in Unreliable Newsvendor Networks," Manufacturing & Service Operations Management, INFORMS, vol. 7(1), pages 37-57, June.
    20. Wu, Dexiang & Wu, Desheng Dash, 2020. "A decision support approach for two-stage multi-objective index tracking using improved lagrangian decomposition," Omega, Elsevier, vol. 91(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:203:y:2024:i:1:d:10.1007_s10957-024-02540-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.