IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v203y2024i1d10.1007_s10957-024-02526-y.html
   My bibliography  Save this article

Simultaneous Diagonalization Under Weak Regularity and a Characterization

Author

Listed:
  • Fabián Flores-Bazán

    (Universidad de Concepción)

  • Felipe Opazo

    (Universidad de Concepción)

Abstract

We analyze the fulfillment of the simultaneous diagonalization (SD via congruence) property for any two real matrices, and develop sufficient conditions expressed in different way to those appeared in the last few years. These conditions are established under a different perspective, and in any case, they supplement and clarify other similar results published elsewhere. Following our point of view reflected in a previous work, we offer some necessary and sufficient conditions, different in nature to those in Jiang and Li (SIAM J Optim 26:1649–1668, 2016), for SD: roughly speaking our approach is more geometric and needs to compute images and kernels of matrices; whereas that in Jiang and Li (SIAM J Optim 26:1649–1668, 2016) requires to compute determinant and canonical forms. The bidimensional situation is particularly analyzed, providing new more precise characterizations than those in higher dimension and joint those given earlier by the authors. In addition, we also establish the connection of our characterization of SD with that provided in Jiang and Li (SIAM J Optim 26:1649–1668, 2016).

Suggested Citation

  • Fabián Flores-Bazán & Felipe Opazo, 2024. "Simultaneous Diagonalization Under Weak Regularity and a Characterization," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 629-650, October.
  • Handle: RePEc:spr:joptap:v:203:y:2024:i:1:d:10.1007_s10957-024-02526-y
    DOI: 10.1007/s10957-024-02526-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02526-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02526-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ting Pong & Henry Wolkowicz, 2014. "The generalized trust region subproblem," Computational Optimization and Applications, Springer, vol. 58(2), pages 273-322, June.
    2. Fabián Flores-Bazán & Giandomenico Mastroeni & Cristián Vera, 2019. "Proper or Weak Efficiency via Saddle Point Conditions in Cone-Constrained Nonconvex Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 181(3), pages 787-816, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Xia & Longfei Wang & Meijia Yang, 2019. "A fast algorithm for globally solving Tikhonov regularized total least squares problem," Journal of Global Optimization, Springer, vol. 73(2), pages 311-330, February.
    2. Min Feng & Shengjie Li & Jie Wang, 2022. "On Tucker-Type Alternative Theorems and Necessary Optimality Conditions for Nonsmooth Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 480-503, November.
    3. César Gutiérrez & Rubén López, 2020. "On the Existence of Weak Efficient Solutions of Nonconvex Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 880-902, June.
    4. Stefan Sremac & Fei Wang & Henry Wolkowicz & Lucas Pettersson, 2019. "Noisy Euclidean distance matrix completion with a single missing node," Journal of Global Optimization, Springer, vol. 75(4), pages 973-1002, December.
    5. Liaoyuan Zeng & Ting Kei Pong, 2022. "$$\rho$$ ρ -regularization subproblems: strong duality and an eigensolver-based algorithm," Computational Optimization and Applications, Springer, vol. 81(2), pages 337-368, March.
    6. Mengmeng Song & Yong Xia, 2023. "Calabi-Polyak convexity theorem, Yuan’s lemma and S-lemma: extensions and applications," Journal of Global Optimization, Springer, vol. 85(3), pages 743-756, March.
    7. Amaioua, Nadir & Audet, Charles & Conn, Andrew R. & Le Digabel, Sébastien, 2018. "Efficient solution of quadratically constrained quadratic subproblems within the mesh adaptive direct search algorithm," European Journal of Operational Research, Elsevier, vol. 268(1), pages 13-24.
    8. A. Taati & M. Salahi, 2019. "A conjugate gradient-based algorithm for large-scale quadratic programming problem with one quadratic constraint," Computational Optimization and Applications, Springer, vol. 74(1), pages 195-223, September.
    9. Van-Bong Nguyen & Thi Ngan Nguyen & Ruey-Lin Sheu, 2020. "Strong duality in minimizing a quadratic form subject to two homogeneous quadratic inequalities over the unit sphere," Journal of Global Optimization, Springer, vol. 76(1), pages 121-135, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:203:y:2024:i:1:d:10.1007_s10957-024-02526-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.