IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v203y2024i1d10.1007_s10957-024-02525-z.html
   My bibliography  Save this article

Convergence-Accelerated Fixed-Time Dynamical Methods for Absolute Value Equations

Author

Listed:
  • Xu Zhang

    (Xiangtan University
    The Key Laboratory of Credible Intelligent Navigation and Positioning of Hunan)

  • Cailian Li

    (Xiangtan University)

  • Longcheng Zhang

    (Xiangtan University)

  • Yaling Hu

    (Xiangtan University)

  • Zheng Peng

    (Xiangtan University)

Abstract

Two new accelerated fixed-time stable dynamic systems are proposed for solving absolute value equations (AVEs): $$Ax-|x|-b=0$$ A x - | x | - b = 0 . Under some mild conditions, the equilibrium point of the proposed dynamic systems is completely equivalent to the solution of the AVEs under consideration. Meanwhile, we have introduced a new relatively tighter global error bound for the AVEs. Leveraging this finding, we have separately established the globally fixed-time stability of the proposed methods, along with providing the conservative settling-time for each method. Compared with some existing state-of-the-art dynamical methods, preliminary numerical experiments show the effectiveness of our methods in solving the AVEs.

Suggested Citation

  • Xu Zhang & Cailian Li & Longcheng Zhang & Yaling Hu & Zheng Peng, 2024. "Convergence-Accelerated Fixed-Time Dynamical Methods for Absolute Value Equations," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 600-628, October.
  • Handle: RePEc:spr:joptap:v:203:y:2024:i:1:d:10.1007_s10957-024-02525-z
    DOI: 10.1007/s10957-024-02525-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02525-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02525-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. H. Xiu & J. Z. Zhang, 2002. "Global Projection-Type Error Bounds for General Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 112(1), pages 213-228, January.
    2. D. Han, 2007. "Inexact Operator Splitting Methods with Selfadaptive Strategy for Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 132(2), pages 227-243, February.
    3. Phan Tu Vuong & Jean Jacques Strodiot, 2020. "A Dynamical System for Strongly Pseudo-monotone Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 767-784, June.
    4. Louis Caccetta & Biao Qu & Guanglu Zhou, 2011. "A globally and quadratically convergent method for absolute value equations," Computational Optimization and Applications, Springer, vol. 48(1), pages 45-58, January.
    5. Saeed Ketabchi & Hossein Moosaei, 2012. "Minimum Norm Solution to the Absolute Value Equation in the Convex Case," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 1080-1087, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaomei Dong & Xingju Cai & Deren Han & Zhili Ge, 2020. "Solving a Class of Variational Inequality Problems with a New Inexact Strategy," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 37(01), pages 1-20, January.
    2. Hongchun Sun & Yiju Wang, 2013. "Further Discussion on the Error Bound for Generalized Linear Complementarity Problem over a Polyhedral Cone," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 93-107, October.
    3. Shota Yamanaka & Nobuo Yamashita, 2018. "Duality of nonconvex optimization with positively homogeneous functions," Computational Optimization and Applications, Springer, vol. 71(2), pages 435-456, November.
    4. Pham Ky Anh & Trinh Ngoc Hai, 2021. "Dynamical system for solving bilevel variational inequalities," Journal of Global Optimization, Springer, vol. 80(4), pages 945-963, August.
    5. Min Zhang & Deren Han & Gang Qian & Xihong Yan, 2012. "A New Decomposition Method for Variational Inequalities with Linear Constraints," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 675-695, March.
    6. Cui-Xia Li, 2016. "A Modified Generalized Newton Method for Absolute Value Equations," Journal of Optimization Theory and Applications, Springer, vol. 170(3), pages 1055-1059, September.
    7. Saeed Ketabchi & Hossein Moosaei & Mohamad Razzaghi & Panos M. Pardalos, 2019. "An improvement on parametric $$\nu $$ ν -support vector algorithm for classification," Annals of Operations Research, Springer, vol. 276(1), pages 155-168, May.
    8. Yuan Liang & Chaoqian Li, 2023. "Modified Picard-like Method for Solving Absolute Value Equations," Mathematics, MDPI, vol. 11(4), pages 1-18, February.
    9. An Wang & Yang Cao & Jing-Xian Chen, 2019. "Modified Newton-Type Iteration Methods for Generalized Absolute Value Equations," Journal of Optimization Theory and Applications, Springer, vol. 181(1), pages 216-230, April.
    10. M. Li & L. Z. Liao & X. M. Yuan, 2009. "Proximal Point Algorithms for General Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 142(1), pages 125-145, July.
    11. Zhang, Jian-Jun, 2015. "The relaxed nonlinear PHSS-like iteration method for absolute value equations," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 266-274.
    12. Deren Han & Wei Xu & Hai Yang, 2010. "Solving a class of variational inequalities with inexact oracle operators," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(3), pages 427-452, June.
    13. Pham Viet Hai & Phan Tu Vuong, 2024. "Third Order Dynamical Systems for the Sum of Two Generalized Monotone Operators," Journal of Optimization Theory and Applications, Springer, vol. 202(2), pages 519-553, August.
    14. J. Y. Bello Cruz & O. P. Ferreira & L. F. Prudente, 2016. "On the global convergence of the inexact semi-smooth Newton method for absolute value equation," Computational Optimization and Applications, Springer, vol. 65(1), pages 93-108, September.
    15. Hossein Moosaei & Saeed Ketabchi & Milan Hladík, 2021. "Optimal correction of the absolute value equations," Journal of Global Optimization, Springer, vol. 79(3), pages 645-667, March.
    16. Wenxing Zhang & Deren Han & Xiaoming Yuan, 2012. "An efficient simultaneous method for the constrained multiple-sets split feasibility problem," Computational Optimization and Applications, Springer, vol. 52(3), pages 825-843, July.
    17. Hongjin He & Chen Ling & Hong-Kun Xu, 2015. "A Relaxed Projection Method for Split Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 166(1), pages 213-233, July.
    18. Milan Hladík, 2018. "Bounds for the solutions of absolute value equations," Computational Optimization and Applications, Springer, vol. 69(1), pages 243-266, January.
    19. Ke, Yi-Fen & Ma, Chang-Feng, 2017. "SOR-like iteration method for solving absolute value equations," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 195-202.
    20. Shi-Liang Wu & Peng Guo, 2016. "On the Unique Solvability of the Absolute Value Equation," Journal of Optimization Theory and Applications, Springer, vol. 169(2), pages 705-712, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:203:y:2024:i:1:d:10.1007_s10957-024-02525-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.