IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v132y2007i1d10.1007_s10957-006-9068-x.html
   My bibliography  Save this article

Convergence Analysis of Modified Hybrid Steepest-Descent Methods with Variable Parameters for Variational Inequalities

Author

Listed:
  • L. C. Zeng

    (Shanghai Normal University)

  • N. C. Wong

    (National Sun Yat-Sen University)

  • J. C. Yao

    (National Sun Yat-Scn University)

Abstract

Assume that F is a nonlinear operator on a real Hilbert space H which is η-strongly monotone and κ-Lipschitzian on a nonempty closed convex subset C of H. Assume also that C is the intersection of the fixed-point sets of a finite number of nonexpansive mappings on H. We construct an iterative algorithm with variable parameters which generates a sequence {x n } from an arbitrary initial point x 0 ∊ H. The sequence {x n } is shown to converge in norm to the unique solution u ∗ of the variational inequality $$\langle F(u^{\ast}), v - u^{\ast}\rangle \geq 0, \quad \forall v \in C.$$

Suggested Citation

  • L. C. Zeng & N. C. Wong & J. C. Yao, 2007. "Convergence Analysis of Modified Hybrid Steepest-Descent Methods with Variable Parameters for Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 132(1), pages 51-69, January.
  • Handle: RePEc:spr:joptap:v:132:y:2007:i:1:d:10.1007_s10957-006-9068-x
    DOI: 10.1007/s10957-006-9068-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-006-9068-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-006-9068-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. K. Xu & T. H. Kim, 2003. "Convergence of Hybrid Steepest-Descent Methods for Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 119(1), pages 185-201, October.
    2. Jen-Chih Yao, 1994. "Variational Inequalities with Generalized Monotone Operators," Mathematics of Operations Research, INFORMS, vol. 19(3), pages 691-705, August.
    3. H.K. Xu, 2003. "An Iterative Approach to Quadratic Optimization," Journal of Optimization Theory and Applications, Springer, vol. 116(3), pages 659-678, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pham Ngoc Anh, 2023. "New Outer Proximal Methods for Solving Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 479-501, August.
    2. Rapeepan Kraikaew & Satit Saejung, 2012. "On Maingé’s Approach for Hierarchical Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 71-87, July.
    3. Lu-Chuan Ceng & Jen-Chih Yao, 2013. "Existence theorems for generalized set-valued mixed (quasi-)variational inequalities in Banach spaces," Journal of Global Optimization, Springer, vol. 55(1), pages 27-51, January.
    4. P. E. Maingé, 2008. "New Approach to Solving a System of Variational Inequalities and Hierarchical Problems," Journal of Optimization Theory and Applications, Springer, vol. 138(3), pages 459-477, September.
    5. Giuseppe Marino & Hong-Kun Xu, 2011. "Explicit Hierarchical Fixed Point Approach to Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 149(1), pages 61-78, April.
    6. Nguyen Buong & Lam Thuy Duong, 2011. "An Explicit Iterative Algorithm for a Class of Variational Inequalities in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 151(3), pages 513-524, December.
    7. L. C. Ceng & A. Petruşel, 2010. "Krasnoselski-Mann Iterations for Hierarchical Fixed Point Problems for a Finite Family of Nonself Mappings in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 146(3), pages 617-639, September.
    8. Nguyen Buong & Nguyen Thi Hong Phuong, 2013. "Strong Convergence to Solutions for a Class of Variational Inequalities in Banach Spaces by Implicit Iteration Methods," Journal of Optimization Theory and Applications, Springer, vol. 159(2), pages 399-411, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Saeidi & D. S. Kim, 2014. "Combination of the Hybrid Steepest-Descent Method and the Viscosity Approximation," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 911-930, March.
    2. L. C. Zeng & S. Schaible & J. C. Yao, 2009. "Hybrid Steepest Descent Methods for Zeros of Nonlinear Operators with Applications to Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 141(1), pages 75-91, April.
    3. Haiyun Zhou & Peiyuan Wang, 2014. "A Simpler Explicit Iterative Algorithm for a Class of Variational Inequalities in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 716-727, June.
    4. Nguyen Buong & Lam Thuy Duong, 2011. "An Explicit Iterative Algorithm for a Class of Variational Inequalities in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 151(3), pages 513-524, December.
    5. Jeong, Jae Ug, 2016. "Generalized viscosity approximation methods for mixed equilibrium problems and fixed point problems," Applied Mathematics and Computation, Elsevier, vol. 283(C), pages 168-180.
    6. Kanikar Muangchoo & Poom Kumam & Yeol Je Cho & Sompong Dhompongsa & Sakulbuth Ekvittayaniphon, 2019. "Approximating Fixed Points of Bregman Generalized α -Nonexpansive Mappings," Mathematics, MDPI, vol. 7(8), pages 1-28, August.
    7. Mostafa Ghadampour & Ebrahim Soori & Ravi P. Agarwal & Donal O’Regan, 2022. "A Strong Convergence Theorem for Solving an Equilibrium Problem and a Fixed Point Problem Using the Bregman Distance," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 854-877, December.
    8. L. C. Zeng & J. C. Yao, 2007. "Existence Theorems for Variational Inequalities in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 132(2), pages 321-337, February.
    9. Yonghong Yao & Yeong-Cheng Liou & Shin Kang, 2013. "Two-step projection methods for a system of variational inequality problems in Banach spaces," Journal of Global Optimization, Springer, vol. 55(4), pages 801-811, April.
    10. Rattanaporn Wangkeeree & Rabian Wangkeeree, 2013. "The general iterative methods for nonexpansive semigroups in Banach spaces," Journal of Global Optimization, Springer, vol. 55(2), pages 417-436, February.
    11. L. C. Ceng & S. Schaible & J. C. Yao, 2008. "Implicit Iteration Scheme with Perturbed Mapping for Equilibrium Problems and Fixed Point Problems of Finitely Many Nonexpansive Mappings," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 403-418, November.
    12. Sitthithakerngkiet, Kanokwan & Deepho, Jitsupa & Kumam, Poom, 2015. "A hybrid viscosity algorithm via modify the hybrid steepest descent method for solving the split variational inclusion in image reconstruction and fixed point problems," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 986-1001.
    13. Shengquan Weng & Dingping Wu, 2018. "Convergence Theorems of Modified Proximal Algorithms for Asymptotical Quasi-nonexpansive Mappings in CAT(0) Spaces," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 10(2), pages 66-76, April.
    14. Mohammad Eslamian & Ali Abkar, 2014. "Viscosity iterative scheme for generalized mixed equilibrium problems and nonexpansive semigroups," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 554-570, July.
    15. F. Cianciaruso & G. Marino & L. Muglia, 2010. "Iterative Methods for Equilibrium and Fixed Point Problems for Nonexpansive Semigroups in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 491-509, August.
    16. Atid Kangtunyakarn, 2013. "A new iterative scheme for fixed point problems of infinite family of κ i -pseudo contractive mappings, equilibrium problem, variational inequality problems," Journal of Global Optimization, Springer, vol. 56(4), pages 1543-1562, August.
    17. Vu Thi Huong & Jen-Chih Yao & Nguyen Dong Yen, 2017. "On the Stability and Solution Sensitivity of a Consumer Problem," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 567-589, November.
    18. Lu-Chuan Ceng & Mihai Postolache & Ching-Feng Wen & Yonghong Yao, 2019. "Variational Inequalities Approaches to Minimization Problems with Constraints of Generalized Mixed Equilibria and Variational Inclusions," Mathematics, MDPI, vol. 7(3), pages 1-20, March.
    19. Wachirapong Jirakitpuwapat & Poom Kumam & Yeol Je Cho & Kanokwan Sitthithakerngkiet, 2019. "A General Algorithm for the Split Common Fixed Point Problem with Its Applications to Signal Processing," Mathematics, MDPI, vol. 7(3), pages 1-20, February.
    20. Eric U. Ofoedu, 2013. "A General Approximation Scheme for Solutions of Various Problems in Fixed Point Theory," International Journal of Analysis, Hindawi, vol. 2013, pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:132:y:2007:i:1:d:10.1007_s10957-006-9068-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.