IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v116y2006i9p1319-1339.html
   My bibliography  Save this article

Regularity and representation of viscosity solutions of partial differential equations via backward stochastic differential equations

Author

Listed:
  • N'Zi, Modeste
  • Ouknine, Youssef
  • Sulem, Agnès

Abstract

We study the regularity of the viscosity solution of a quasilinear parabolic partial differential equation with Lipschitz coefficients by using its connection with a forward backward stochastic differential equation (in short FBSDE) and we give a probabilistic representation of the generalized gradient (derivative in the distribution sense) of the viscosity solution. This representation is a kind of nonlinear Feynman-Kac formula. The main idea is to show that the FBSDE admits a unique linearized version interpreted as its distributional derivative with respect to the initial condition. If the diffusion coefficient of the forward equation is uniformly elliptic, we approximate the FBSDE by smooth ones and use Krylov's estimate to prove the convergence of the derivatives. In the degenerate case, we use techniques of Bouleau-Hirsch on absolute continuity of probability measures.

Suggested Citation

  • N'Zi, Modeste & Ouknine, Youssef & Sulem, Agnès, 2006. "Regularity and representation of viscosity solutions of partial differential equations via backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 116(9), pages 1319-1339, September.
  • Handle: RePEc:eee:spapps:v:116:y:2006:i:9:p:1319-1339
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(06)00027-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richter, Anja, 2014. "Explicit solutions to quadratic BSDEs and applications to utility maximization in multivariate affine stochastic volatility models," Stochastic Processes and their Applications, Elsevier, vol. 124(11), pages 3578-3611.
    2. Olivier Menoukeu-Pamen & Ludovic Tangpi, 2023. "Maximum Principle for Stochastic Control of SDEs with Measurable Drifts," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 1195-1228, June.
    3. Jean-François Chassagneux & Romuald Elie & Idris Kharroubi, 2015. "When terminal facelift enforces delta constraints," Finance and Stochastics, Springer, vol. 19(2), pages 329-362, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:116:y:2006:i:9:p:1319-1339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.