IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1406.6245.html
   My bibliography  Save this paper

Optimal investment with time-varying stochastic endowments

Author

Listed:
  • Christoph Belak
  • An Chen
  • Carla Mereu
  • Robert Stelzer

Abstract

This paper considers a utility maximization and optimal asset allocation problem in the presence of a stochastic endowment that cannot be fully hedged through trading in the financial market. After studying continuity properties of the value function for general utility functions, we rely on the dynamic programming approach to solve the optimization problem for power utility investors including the empirically relevant and mathematically challenging case of relative risk aversion larger than one. For this, we argue that the value function is the unique viscosity solution of the Hamilton-Jacobi-Bellman (HJB) equation. The homogeneity of the value function is then used to reduce the HJB equation by one dimension, which allows us to prove that the value function is even a classical solution thereof. Using this, an optimal strategy is derived and its asymptotic behavior in the large wealth regime is discussed.

Suggested Citation

  • Christoph Belak & An Chen & Carla Mereu & Robert Stelzer, 2014. "Optimal investment with time-varying stochastic endowments," Papers 1406.6245, arXiv.org, revised Feb 2022.
  • Handle: RePEc:arx:papers:1406.6245
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1406.6245
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyeng Keun Koo, 1998. "Consumption and Portfolio Selection with Labor Income: A Continuous Time Approach," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 49-65, January.
    2. He, Hua & Pearson, Neil D., 1991. "Consumption and portfolio policies with incomplete markets and short-sale constraints: The infinite dimensional case," Journal of Economic Theory, Elsevier, vol. 54(2), pages 259-304, August.
    3. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    4. Julien Hugonnier & Dmitry Kramkov, 2004. "Optimal investment with random endowments in incomplete markets," Papers math/0405293, arXiv.org.
    5. Hua He & Neil D. Pearson, 1991. "Consumption and Portfolio Policies With Incomplete Markets and Short‐Sale Constraints: the Finite‐Dimensional Case1," Mathematical Finance, Wiley Blackwell, vol. 1(3), pages 1-10, July.
    6. Campbell, John Y. & Viceira, Luis M., 2002. "Strategic Asset Allocation: Portfolio Choice for Long-Term Investors," OUP Catalogue, Oxford University Press, number 9780198296942.
    7. Stanley R. Pliska, 1986. "A Stochastic Calculus Model of Continuous Trading: Optimal Portfolios," Mathematics of Operations Research, INFORMS, vol. 11(2), pages 371-382, May.
    8. Ying Hu & Peter Imkeller & Matthias Muller, 2005. "Utility maximization in incomplete markets," Papers math/0508448, arXiv.org.
    9. Duffie, Darrell & Fleming, Wendell & Soner, H. Mete & Zariphopoulou, Thaleia, 1997. "Hedging in incomplete markets with HARA utility," Journal of Economic Dynamics and Control, Elsevier, vol. 21(4-5), pages 753-782, May.
    10. Cuoco, Domenico, 1997. "Optimal Consumption and Equilibrium Prices with Portfolio Constraints and Stochastic Income," Journal of Economic Theory, Elsevier, vol. 72(1), pages 33-73, January.
    11. (**), Hui Wang & Jaksa Cvitanic & (*), Walter Schachermayer, 2001. "Utility maximization in incomplete markets with random endowment," Finance and Stochastics, Springer, vol. 5(2), pages 259-272.
    12. Nicole El Karoui & Monique Jeanblanc-Picqué, 1998. "Optimization of consumption with labor income," Finance and Stochastics, Springer, vol. 2(4), pages 409-440.
    13. Robert H. Topel & Michael P. Ward, 1992. "Job Mobility and the Careers of Young Men," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(2), pages 439-479.
    14. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    15. Sundaresan, Suresh & Zapatero, Fernando, 1997. "Valuation, Optimal Asset Allocation and Retirement Incentives of Pension Plans," The Review of Financial Studies, Society for Financial Studies, vol. 10(3), pages 631-660.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schwartz, Eduardo S & Tebaldi, Claudio, 2004. "Illiquid Assets and Optimal Portfolio Choice," University of California at Los Angeles, Anderson Graduate School of Management qt7q65t12x, Anderson Graduate School of Management, UCLA.
    2. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    3. Kamma, Thijs & Pelsser, Antoon, 2022. "Near-optimal asset allocation in financial markets with trading constraints," European Journal of Operational Research, Elsevier, vol. 297(2), pages 766-781.
    4. Jouini, Elyes, 2001. "Arbitrage and control problems in finance: A presentation," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 167-183, April.
    5. Roche, Hervé & Tompaidis, Stathis & Yang, Chunyu, 2013. "Why does junior put all his eggs in one basket? A potential rational explanation for holding concentrated portfolios," Journal of Financial Economics, Elsevier, vol. 109(3), pages 775-796.
    6. Gerrard, Russell & Kyriakou, Ioannis & Nielsen, Jens Perch & Vodička, Peter, 2023. "On optimal constrained investment strategies for long-term savers in stochastic environments and probability hedging," European Journal of Operational Research, Elsevier, vol. 307(2), pages 948-962.
    7. Ioannis Karatzas & Gordan Zitkovic, 2007. "Optimal consumption from investment and random endowment in incomplete semimartingale markets," Papers 0706.0051, arXiv.org.
    8. Wahid Faidi & Hanen Mezghanni & Mohamed Mnif, 2019. "Expected Utility Maximization Problem Under State Constraints and Model Uncertainty," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 1123-1152, December.
    9. Schroder, Mark & Skiadas, Costis, 2005. "Lifetime consumption-portfolio choice under trading constraints, recursive preferences, and nontradeable income," Stochastic Processes and their Applications, Elsevier, vol. 115(1), pages 1-30, January.
    10. repec:dau:papers:123456789/5374 is not listed on IDEAS
    11. Martin B. Haugh & Leonid Kogan & Jiang Wang, 2006. "Evaluating Portfolio Policies: A Duality Approach," Operations Research, INFORMS, vol. 54(3), pages 405-418, June.
    12. André Palma & Jean-Luc Prigent, 2009. "Standardized versus customized portfolio: a compensating variation approach," Annals of Operations Research, Springer, vol. 165(1), pages 161-185, January.
    13. Mnif, Mohammed & Pham, Huyên, 2001. "Stochastic optimization under constraints," Stochastic Processes and their Applications, Elsevier, vol. 93(1), pages 149-180, May.
    14. repec:dau:papers:123456789/5590 is not listed on IDEAS
    15. Paul Willen & Felix Kubler, 2006. "Collateralized Borrowing And Life-Cycle Portfolio Choice," 2006 Meeting Papers 578, Society for Economic Dynamics.
    16. Julien Hugonnier & Dmitry Kramkov, 2004. "Optimal investment with random endowments in incomplete markets," Papers math/0405293, arXiv.org.
    17. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    18. L. Rüschendorf & Steven Vanduffel, 2020. "On the construction of optimal payoffs," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 129-153, June.
    19. Matoussi, Anis & Xing, Hao, 2018. "Convex duality for Epstein-Zin stochastic differential utility," LSE Research Online Documents on Economics 82519, London School of Economics and Political Science, LSE Library.
    20. John H. Cochrane, 2014. "A Mean-Variance Benchmark for Intertemporal Portfolio Theory," Journal of Finance, American Finance Association, vol. 69(1), pages 1-49, February.
    21. Jessica A. Wachter, 2010. "Asset Allocation," Annual Review of Financial Economics, Annual Reviews, vol. 2(1), pages 175-206, December.
    22. Thijs Kamma & Antoon Pelsser, 2019. "Near-Optimal Dynamic Asset Allocation in Financial Markets with Trading Constraints," Papers 1906.12317, arXiv.org, revised Oct 2019.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1406.6245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.