IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02415789.html
   My bibliography  Save this paper

Convergence rate of a relaxed inertial proximal algorithm for convex minimization

Author

Listed:
  • Hedy Attouch

    (IMAG - Institut Montpelliérain Alexander Grothendieck - UM - Université de Montpellier - CNRS - Centre National de la Recherche Scientifique)

  • Alexandre Cabot

    (IMB - Institut de Mathématiques de Bourgogne [Dijon] - UB - Université de Bourgogne - CNRS - Centre National de la Recherche Scientifique)

Abstract

In a Hilbert space setting, the authors recently introduced a general class of relaxed inertial proximal algorithms that aim to solve monotone inclusions. In this paper, we specialize this study in the case of non-smooth convex minimization problems. We obtain convergence rates for values which have similarities with the results based on the Nesterov accelerated gradient method. The joint adjustment of inertia, relaxation and proximal terms plays a central role. In doing so, we highlight inertial proximal algorithms that converge for general monotone inclusions, and which, in the case of convex minimization, give fast convergence rates of values in the worst case.

Suggested Citation

  • Hedy Attouch & Alexandre Cabot, 2020. "Convergence rate of a relaxed inertial proximal algorithm for convex minimization," Post-Print hal-02415789, HAL.
  • Handle: RePEc:hal:journl:hal-02415789
    DOI: 10.1080/02331934.2019.1696337
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan Wu & Wei Bian, 2023. "Smoothing Accelerated Proximal Gradient Method with Fast Convergence Rate for Nonsmooth Convex Optimization Beyond Differentiability," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 539-572, May.
    2. M. Marques Alves & Jonathan Eckstein & Marina Geremia & Jefferson G. Melo, 2020. "Relative-error inertial-relaxed inexact versions of Douglas-Rachford and ADMM splitting algorithms," Computational Optimization and Applications, Springer, vol. 75(2), pages 389-422, March.
    3. S.-M. Grad & F. Lara & R. T. Marcavillaca, 2023. "Relaxed-inertial proximal point type algorithms for quasiconvex minimization," Journal of Global Optimization, Springer, vol. 85(3), pages 615-635, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02415789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.