IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v195y2022i1d10.1007_s10957-022-02056-5.html
   My bibliography  Save this article

Global Convergence of Algorithms Under Constant Rank Conditions for Nonlinear Second-Order Cone Programming

Author

Listed:
  • Roberto Andreani

    (University of Campinas)

  • Gabriel Haeser

    (University of São Paulo)

  • Leonardo M. Mito

    (University of São Paulo)

  • C. Héctor Ramírez

    (Universidad de Chile)

  • Thiago P. Silveira

    (University of São Paulo)

Abstract

In Andreani et al. (Weak notions of nondegeneracy in nonlinear semidefinite programming, 2020), the classical notion of nondegeneracy (or transversality) and Robinson’s constraint qualification have been revisited in the context of nonlinear semidefinite programming exploiting the structure of the problem, namely its eigendecomposition. This allows formulating the conditions equivalently in terms of (positive) linear independence of significantly smaller sets of vectors. In this paper, we extend these ideas to the context of nonlinear second-order cone programming. For instance, for an m-dimensional second-order cone, instead of stating nondegeneracy at the vertex as the linear independence of m derivative vectors, we do it in terms of several statements of linear independence of 2 derivative vectors. This allows embedding the structure of the second-order cone into the formulation of nondegeneracy and, by extension, Robinson’s constraint qualification as well. This point of view is shown to be crucial in defining significantly weaker constraint qualifications such as the constant rank constraint qualification and the constant positive linear dependence condition. Also, these conditions are shown to be sufficient for guaranteeing global convergence of several algorithms, while still implying metric subregularity and without requiring boundedness of the set of Lagrange multipliers.

Suggested Citation

  • Roberto Andreani & Gabriel Haeser & Leonardo M. Mito & C. Héctor Ramírez & Thiago P. Silveira, 2022. "Global Convergence of Algorithms Under Constant Rank Conditions for Nonlinear Second-Order Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 42-78, October.
  • Handle: RePEc:spr:joptap:v:195:y:2022:i:1:d:10.1007_s10957-022-02056-5
    DOI: 10.1007/s10957-022-02056-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-022-02056-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-022-02056-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Helmut Gfrerer & Jiří V. Outrata, 2016. "On Computation of Generalized Derivatives of the Normal-Cone Mapping and Their Applications," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1535-1556, November.
    2. R. Andreani & J. M. Martinez & M. L. Schuverdt, 2005. "On the Relation between Constant Positive Linear Dependence Condition and Quasinormality Constraint Qualification," Journal of Optimization Theory and Applications, Springer, vol. 125(2), pages 473-483, May.
    3. R. Andreani & C. E. Echagüe & M. L. Schuverdt, 2010. "Constant-Rank Condition and Second-Order Constraint Qualification," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 255-266, August.
    4. René Henrion & Alexander Y. Kruger & Jiří V. Outrata, 2013. "Some Remarks on Stability of Generalized Equations," Journal of Optimization Theory and Applications, Springer, vol. 159(3), pages 681-697, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roberto Andreani & Ellen H. Fukuda & Gabriel Haeser & Daiana O. Santos & Leonardo D. Secchin, 2024. "Optimality Conditions for Nonlinear Second-Order Cone Programming and Symmetric Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 1-33, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuang Bai & Yixia Song & Jin Zhang, 2023. "Second-Order Enhanced Optimality Conditions and Constraint Qualifications," Journal of Optimization Theory and Applications, Springer, vol. 198(3), pages 1264-1284, September.
    2. Lei Guo & Gui-Hua Lin & Jane J. Ye, 2013. "Second-Order Optimality Conditions for Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 33-64, July.
    3. Giorgio Giorgi, 2018. "A Guided Tour in Constraint Qualifications for Nonlinear Programming under Differentiability Assumptions," DEM Working Papers Series 160, University of Pavia, Department of Economics and Management.
    4. Iasson Karafyllis, 2014. "Feedback Stabilization Methods for the Solution of Nonlinear Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 783-806, June.
    5. María C. Maciel & Sandra A. Santos & Graciela N. Sottosanto, 2011. "On Second-Order Optimality Conditions for Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 149(2), pages 332-351, May.
    6. Giorgio Giorgi, 2019. "Notes on Constraint Qualifications for Second-Order Optimality Conditions," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 11(5), pages 16-32, October.
    7. Giorgio, 2019. "On Second-Order Optimality Conditions in Smooth Nonlinear Programming Problems," DEM Working Papers Series 171, University of Pavia, Department of Economics and Management.
    8. L. F. Bueno & G. Haeser & J. M. Martínez, 2015. "A Flexible Inexact-Restoration Method for Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 188-208, April.
    9. Chungen Shen & Lei-Hong Zhang & Wei Liu, 2016. "A stabilized filter SQP algorithm for nonlinear programming," Journal of Global Optimization, Springer, vol. 65(4), pages 677-708, August.
    10. H. Gfrerer & J. V. Outrata, 2017. "On the Aubin property of a class of parameterized variational systems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(3), pages 443-467, December.
    11. Kaiwen Meng & Xiaoqi Yang, 2015. "First- and Second-Order Necessary Conditions Via Exact Penalty Functions," Journal of Optimization Theory and Applications, Springer, vol. 165(3), pages 720-752, June.
    12. Leonid Minchenko, 2019. "Note on Mangasarian–Fromovitz-Like Constraint Qualifications," Journal of Optimization Theory and Applications, Springer, vol. 182(3), pages 1199-1204, September.
    13. Chungen Shen & Lei-Hong Zhang & Bo Wang & Wenqiong Shao, 2014. "Global and local convergence of a nonmonotone SQP method for constrained nonlinear optimization," Computational Optimization and Applications, Springer, vol. 59(3), pages 435-473, December.
    14. L. Minchenko & A. Tarakanov, 2011. "On Error Bounds for Quasinormal Programs," Journal of Optimization Theory and Applications, Springer, vol. 148(3), pages 571-579, March.
    15. Nguyen Huy Chieu & Gue Myung Lee, 2014. "Constraint Qualifications for Mathematical Programs with Equilibrium Constraints and their Local Preservation Property," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 755-776, December.
    16. V. D. Thinh & T. D. Chuong & N. L. H. Anh, 2023. "Second order analysis for robust inclusion systems and applications," Journal of Global Optimization, Springer, vol. 85(1), pages 81-110, January.
    17. Helmut Gfrerer & Jiří V. Outrata, 2016. "On Computation of Generalized Derivatives of the Normal-Cone Mapping and Their Applications," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1535-1556, November.
    18. Shuai Liu, 2019. "A simple version of bundle method with linear programming," Computational Optimization and Applications, Springer, vol. 72(2), pages 391-412, March.
    19. Roger Behling & Gabriel Haeser & Alberto Ramos & Daiana S. Viana, 2018. "On a Conjecture in Second-Order Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 625-633, March.
    20. Giorgio Giorgi & Bienvenido Jiménez & Vicente Novo, 2016. "Approximate Karush–Kuhn–Tucker Condition in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 70-89, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:195:y:2022:i:1:d:10.1007_s10957-022-02056-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.