Second order analysis for robust inclusion systems and applications
Author
Abstract
Suggested Citation
DOI: 10.1007/s10898-022-01197-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Helmut Gfrerer & Jiří V. Outrata, 2016. "On Computation of Generalized Derivatives of the Normal-Cone Mapping and Their Applications," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1535-1556, November.
- Thai Doan Chuong & Do Sang Kim, 2016. "Hölder-Like Property and Metric Regularity of a Positive-Order for Implicit Multifunctions," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 596-611, May.
- Nguyen Thanh Qui, 2014. "Generalized Differentiation of a Class of Normal Cone Operators," Journal of Optimization Theory and Applications, Springer, vol. 161(2), pages 398-429, May.
- N. D. Yen, 1995. "Lipschitz Continuity of Solutions of Variational Inequalities with a Parametric Polyhedral Constraint," Mathematics of Operations Research, INFORMS, vol. 20(3), pages 695-708, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Thinh, Vo Duc & Chuong, Thai Doan & Le Hoang Anh, Nguyen, 2023. "Formulas of first-ordered and second-ordered generalization differentials for convex robust systems with applications," Applied Mathematics and Computation, Elsevier, vol. 455(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Jian & He, Xiaozheng & Peeta, Srinivas & Wang, Wei, 2022. "Globally convergent line search algorithm with Euler-based step size-determination method for continuous network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 119-144.
- Michael Patriksson & R. Tyrrell Rockafellar, 2003. "Sensitivity Analysis of Aggregated Variational Inequality Problems, with Application to Traffic Equilibria," Transportation Science, INFORMS, vol. 37(1), pages 56-68, February.
- Le Tuan & Gue Lee & Pham Sach, 2010. "Upper semicontinuity result for the solution mapping of a mixed parametric generalized vector quasiequilibrium problem with moving cones," Journal of Global Optimization, Springer, vol. 47(4), pages 639-660, August.
- Tong, Jun & Hu, Jiaqiao & Hu, Jianqiang, 2017. "Computing equilibrium prices for a capital asset pricing model with heterogeneous beliefs and margin-requirement constraints," European Journal of Operational Research, Elsevier, vol. 256(1), pages 24-34.
- X. P. Ding & C. L. Luo, 1999. "On Parametric Generalized Quasi-Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 100(1), pages 195-205, January.
- Ashkan Mohammadi & Boris S. Mordukhovich, 2022. "Optimality Conditions for Variational Problems in Incomplete Functional Spaces," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 139-157, June.
- Patriksson, Michael, 2008. "On the applicability and solution of bilevel optimization models in transportation science: A study on the existence, stability and computation of optimal solutions to stochastic mathematical programs," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 843-860, December.
- Kien, B.T. & Wong, M.-M. & Wong, N.C. & Yao, J.C., 2009. "Degree theory for generalized variational inequalities and applications," European Journal of Operational Research, Elsevier, vol. 192(3), pages 730-736, February.
- Josef Jablonský & Michal Černý & Juraj Pekár, 2022. "The last dozen of years of OR research in Czechia and Slovakia," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(2), pages 435-447, June.
- Duong Thi Kim Huyen & Jen-Chih Yao & Nguyen Dong Yen, 2019. "Sensitivity Analysis of a Stationary Point Set Map Under Total Perturbations. Part 2: Robinson Stability," Journal of Optimization Theory and Applications, Springer, vol. 180(1), pages 117-139, January.
- Roberto Andreani & Gabriel Haeser & Leonardo M. Mito & C. Héctor Ramírez & Thiago P. Silveira, 2022. "Global Convergence of Algorithms Under Constant Rank Conditions for Nonlinear Second-Order Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 42-78, October.
- Michael Patriksson, 2004. "Sensitivity Analysis of Traffic Equilibria," Transportation Science, INFORMS, vol. 38(3), pages 258-281, August.
- Duong Thi Kim Huyen & Jen-Chih Yao & Nguyen Dong Yen, 2019. "Sensitivity Analysis of a Stationary Point Set Map Under Total Perturbations. Part 1: Lipschitzian Stability," Journal of Optimization Theory and Applications, Springer, vol. 180(1), pages 91-116, January.
- M. A. Noor, 1997. "Sensitivity Analysis for Quasi-Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 95(2), pages 399-407, November.
- Thai Doan Chuong & Do Sang Kim, 2018. "Normal regularity for the feasible set of semi-infinite multiobjective optimization problems with applications," Annals of Operations Research, Springer, vol. 267(1), pages 81-99, August.
- Jafari, Ehsan & Boyles, Stephen D., 2016. "Improved bush-based methods for network contraction," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 298-313.
- D. Aussel & J. Cotrina, 2013. "Stability of Quasimonotone Variational Inequality Under Sign-Continuity," Journal of Optimization Theory and Applications, Springer, vol. 158(3), pages 653-667, September.
- Lucian Coroianu, 2016. "Best Lipschitz Constants of Solutions of Quadratic Programs," Journal of Optimization Theory and Applications, Springer, vol. 170(3), pages 853-875, September.
- Lu, Shu & (Marco) Nie, Yu, 2010. "Stability of user-equilibrium route flow solutions for the traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 609-617, May.
- P. Q. Khanh & L. M. Luu, 2007. "Lower Semicontinuity and Upper Semicontinuity of the Solution Sets and Approximate Solution Sets of Parametric Multivalued Quasivariational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 133(3), pages 329-339, June.
More about this item
Keywords
Graphical derivative; Normal cone mapping; Generalized equation; Robust optimization; Second order epi-subderivative; Second order tangent set;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:85:y:2023:i:1:d:10.1007_s10898-022-01197-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.