IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v194y2022i1d10.1007_s10957-022-02013-2.html
   My bibliography  Save this article

Quadratic Growth Conditions and Uniqueness of Optimal Solution to Lasso

Author

Listed:
  • Yunier Bello-Cruz

    (Northern Illinois University)

  • Guoyin Li

    (University of New South Wales)

  • Tran Thai An Nghia

    (Oakland University)

Abstract

In the previous paper Bello-Cruz et al. (J Optim Theory Appl 188:378–401, 2021), we showed that the quadratic growth condition plays a key role in obtaining Q-linear convergence of the widely used forward–backward splitting method with Beck–Teboulle’s line search. In this paper, we analyze the property of quadratic growth condition via second-order variational analysis for various structured optimization problems that arise in machine learning and signal processing. This includes, for example, the Poisson linear inverse problem as well as the $$\ell _1$$ ℓ 1 -regularized optimization problems. As a by-product of this approach, we also obtain several full characterizations for the uniqueness of optimal solution to Lasso problem, which complements and extends recent important results in this direction.

Suggested Citation

  • Yunier Bello-Cruz & Guoyin Li & Tran Thai An Nghia, 2022. "Quadratic Growth Conditions and Uniqueness of Optimal Solution to Lasso," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 167-190, July.
  • Handle: RePEc:spr:joptap:v:194:y:2022:i:1:d:10.1007_s10957-022-02013-2
    DOI: 10.1007/s10957-022-02013-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-022-02013-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-022-02013-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yunier Bello-Cruz & Guoyin Li & Tran T. A. Nghia, 2021. "On the Linear Convergence of Forward–Backward Splitting Method: Part I—Convergence Analysis," Journal of Optimization Theory and Applications, Springer, vol. 188(2), pages 378-401, February.
    2. Dmitriy Drusvyatskiy & Adrian S. Lewis, 2018. "Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 919-948, August.
    3. Ion Necoara & Yurii Nesterov & François Glineur, 2019. "Linear convergence of first order methods for non-strongly convex optimization," LIDAM Reprints CORE 3000, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Jean Charles Gilbert, 2017. "On the Solution Uniqueness Characterization in the L1 Norm and Polyhedral Gauge Recovery," Journal of Optimization Theory and Applications, Springer, vol. 172(1), pages 70-101, January.
    5. Patrick L. Combettes & Jean-Christophe Pesquet, 2011. "Proximal Splitting Methods in Signal Processing," Springer Optimization and Its Applications, in: Heinz H. Bauschke & Regina S. Burachik & Patrick L. Combettes & Veit Elser & D. Russell Luke & Henry (ed.), Fixed-Point Algorithms for Inverse Problems in Science and Engineering, chapter 0, pages 185-212, Springer.
    6. Heinz H. Bauschke & Jérôme Bolte & Marc Teboulle, 2017. "A Descent Lemma Beyond Lipschitz Gradient Continuity: First-Order Methods Revisited and Applications," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 330-348, May.
    7. Hui Zhang & Wotao Yin & Lizhi Cheng, 2015. "Necessary and Sufficient Conditions of Solution Uniqueness in 1-Norm Minimization," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 109-122, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunier Bello-Cruz & Guoyin Li & Tran T. A. Nghia, 2021. "On the Linear Convergence of Forward–Backward Splitting Method: Part I—Convergence Analysis," Journal of Optimization Theory and Applications, Springer, vol. 188(2), pages 378-401, February.
    2. Tim Hoheisel & Elliot Paquette, 2023. "Uniqueness in Nuclear Norm Minimization: Flatness of the Nuclear Norm Sphere and Simultaneous Polarization," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 252-276, April.
    3. Xin Jiang & Lieven Vandenberghe, 2023. "Bregman Three-Operator Splitting Methods," Journal of Optimization Theory and Applications, Springer, vol. 196(3), pages 936-972, March.
    4. Zamani, Moslem & Abbaszadehpeivasti, Hadi & de Klerk, Etienne, 2024. "The exact worst-case convergence rate of the alternating direction method of multipliers," Other publications TiSEM f30ae9e6-ed19-423f-bd1e-0, Tilburg University, School of Economics and Management.
    5. S. Bonettini & M. Prato & S. Rebegoldi, 2018. "A block coordinate variable metric linesearch based proximal gradient method," Computational Optimization and Applications, Springer, vol. 71(1), pages 5-52, September.
    6. Patrick R. Johnstone & Pierre Moulin, 2017. "Local and global convergence of a general inertial proximal splitting scheme for minimizing composite functions," Computational Optimization and Applications, Springer, vol. 67(2), pages 259-292, June.
    7. Adrien B. Taylor & Julien M. Hendrickx & François Glineur, 2018. "Exact Worst-Case Convergence Rates of the Proximal Gradient Method for Composite Convex Minimization," Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 455-476, August.
    8. Wei Peng & Hui Zhang & Xiaoya Zhang & Lizhi Cheng, 2020. "Global complexity analysis of inexact successive quadratic approximation methods for regularized optimization under mild assumptions," Journal of Global Optimization, Springer, vol. 78(1), pages 69-89, September.
    9. Xiaoya Zhang & Wei Peng & Hui Zhang, 2022. "Inertial proximal incremental aggregated gradient method with linear convergence guarantees," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(2), pages 187-213, October.
    10. Hui Zhang & Yu-Hong Dai & Lei Guo & Wei Peng, 2021. "Proximal-Like Incremental Aggregated Gradient Method with Linear Convergence Under Bregman Distance Growth Conditions," Mathematics of Operations Research, INFORMS, vol. 46(1), pages 61-81, February.
    11. Shota Takahashi & Mituhiro Fukuda & Mirai Tanaka, 2022. "New Bregman proximal type algorithms for solving DC optimization problems," Computational Optimization and Applications, Springer, vol. 83(3), pages 893-931, December.
    12. Guillaume Sagnol & Edouard Pauwels, 2019. "An unexpected connection between Bayes A-optimal designs and the group lasso," Statistical Papers, Springer, vol. 60(2), pages 565-584, April.
    13. Ernest K. Ryu & Yanli Liu & Wotao Yin, 2019. "Douglas–Rachford splitting and ADMM for pathological convex optimization," Computational Optimization and Applications, Springer, vol. 74(3), pages 747-778, December.
    14. Weiyang Ding & Michael K. Ng & Wenxing Zhang, 2024. "A generalized alternating direction implicit method for consensus optimization: application to distributed sparse logistic regression," Journal of Global Optimization, Springer, vol. 90(3), pages 727-753, November.
    15. Puya Latafat & Panagiotis Patrinos, 2017. "Asymmetric forward–backward–adjoint splitting for solving monotone inclusions involving three operators," Computational Optimization and Applications, Springer, vol. 68(1), pages 57-93, September.
    16. Sedi Bartz & Rubén Campoy & Hung M. Phan, 2022. "An Adaptive Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 1019-1055, December.
    17. HyungSeon Oh, 2021. "Distributed optimal power flow," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-27, June.
    18. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    19. Wang, Yugang & Huang, Ting-Zhu & Zhao, Xi-Le & Deng, Liang-Jian & Ji, Teng-Yu, 2020. "A convex single image dehazing model via sparse dark channel prior," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    20. Zehui Jia & Jieru Huang & Xingju Cai, 2021. "Proximal-like incremental aggregated gradient method with Bregman distance in weakly convex optimization problems," Journal of Global Optimization, Springer, vol. 80(4), pages 841-864, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:194:y:2022:i:1:d:10.1007_s10957-022-02013-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.