IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v190y2021i2d10.1007_s10957-021-01889-w.html
   My bibliography  Save this article

Fully Piecewise Linear Vector Optimization Problems

Author

Listed:
  • Xi Yin Zheng

    (Yunnan University)

  • Xiaoqi Yang

    (The Hong Kong Polytechnic University)

Abstract

We distinguish two kinds of piecewise linear functions and provide an interesting representation for a piecewise linear function between two normed spaces. Based on such a representation, we study a fully piecewise linear vector optimization problem with the objective and constraint functions being piecewise linear. To solve this problem, we divide it into some linear subproblems and structure a dimensional reduction method. Under some mild assumptions, we prove that its Pareto (resp., weak Pareto) solution set is the union of finitely many generalized polyhedra (resp., polyhedra), each of which is contained in a Pareto (resp., weak Pareto) face of some linear subproblem. Our main results are even new in the linear case and further generalize Arrow, Barankin and Blackwell’s classical results on linear vector optimization problems in the framework of finite-dimensional spaces.

Suggested Citation

  • Xi Yin Zheng & Xiaoqi Yang, 2021. "Fully Piecewise Linear Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 190(2), pages 461-490, August.
  • Handle: RePEc:spr:joptap:v:190:y:2021:i:2:d:10.1007_s10957-021-01889-w
    DOI: 10.1007/s10957-021-01889-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-021-01889-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-021-01889-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. V. Thuan & D. T. Luc, 2000. "On Sensitivity in Linear Multiobjective Programming," Journal of Optimization Theory and Applications, Springer, vol. 107(3), pages 615-626, December.
    2. Dinh The Luc, 2016. "Multiobjective Linear Programming," Springer Books, Springer, edition 1, number 978-3-319-21091-9, July.
    3. H. P. Benson & E. Sun, 2000. "Outcome Space Partition of the Weight Set in Multiobjective Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 105(1), pages 17-36, April.
    4. X. Q. Yang & N. D. Yen, 2010. "Structure and Weak Sharp Minimum of the Pareto Solution Set for Piecewise Linear Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 147(1), pages 113-124, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jae Hyoung Lee & Nithirat Sisarat & Liguo Jiao, 2021. "Multi-objective convex polynomial optimization and semidefinite programming relaxations," Journal of Global Optimization, Springer, vol. 80(1), pages 117-138, May.
    2. Anthony Przybylski & Xavier Gandibleux & Matthias Ehrgott, 2010. "A Recursive Algorithm for Finding All Nondominated Extreme Points in the Outcome Set of a Multiobjective Integer Programme," INFORMS Journal on Computing, INFORMS, vol. 22(3), pages 371-386, August.
    3. Gholamreza Shojatalab & Seyed Hadi Nasseri & Iraj Mahdavi, 2023. "New multi-objective optimization model for tourism systems with fuzzy data and new approach developed epsilon constraint method," OPSEARCH, Springer;Operational Research Society of India, vol. 60(3), pages 1360-1385, September.
    4. Siming Pan & Shaokai Lu & Kaiwen Meng & Shengkun Zhu, 2021. "Trade-Off Ratio Functions for Linear and Piecewise Linear Multi-objective Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 188(2), pages 402-419, February.
    5. Britta Schulze & Kathrin Klamroth & Michael Stiglmayr, 2019. "Multi-objective unconstrained combinatorial optimization: a polynomial bound on the number of extreme supported solutions," Journal of Global Optimization, Springer, vol. 74(3), pages 495-522, July.
    6. Markus Hirschberger & Ralph E. Steuer & Sebastian Utz & Maximilian Wimmer & Yue Qi, 2013. "Computing the Nondominated Surface in Tri-Criterion Portfolio Selection," Operations Research, INFORMS, vol. 61(1), pages 169-183, February.
    7. Daniel Jornada & V. Jorge Leon, 2020. "Filtering Algorithms for Biobjective Mixed Binary Linear Optimization Problems with a Multiple-Choice Constraint," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 57-73, January.
    8. N. Mahdavi-Amiri & F. Salehi Sadaghiani, 2017. "Strictly feasible solutions and strict complementarity in multiple objective linear optimization," 4OR, Springer, vol. 15(3), pages 303-326, September.
    9. Rogério A. Rocha & Paulo R. Oliveira & Ronaldo M. Gregório & Michael Souza, 2016. "A Proximal Point Algorithm with Quasi-distance in Multi-objective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 964-979, December.
    10. Alexander Engau & Margaret M. Wiecek, 2008. "Interactive Coordination of Objective Decompositions in Multiobjective Programming," Management Science, INFORMS, vol. 54(7), pages 1350-1363, July.
    11. Benson, Harold P. & Sun, Erjiang, 2002. "A weight set decomposition algorithm for finding all efficient extreme points in the outcome set of a multiple objective linear program," European Journal of Operational Research, Elsevier, vol. 139(1), pages 26-41, May.
    12. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    13. M. Ehrgott & J. Puerto & A. M. Rodríguez-Chía, 2007. "Primal-Dual Simplex Method for Multiobjective Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 483-497, September.
    14. Melih Ozlen & Benjamin A. Burton & Cameron A. G. MacRae, 2014. "Multi-Objective Integer Programming: An Improved Recursive Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 470-482, February.
    15. Margarita M. L. Rodríguez & José Vicente-Pérez, 2017. "On Finite Linear Systems Containing Strict Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 131-154, April.
    16. Ya Ping Fang & Nan Jing Huang & Xiao Qi Yang, 2012. "Local Smooth Representations of Parametric Semiclosed Polyhedra with Applications to Sensitivity in Piecewise Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 810-839, December.
    17. Jyrki Wallenius & James S. Dyer & Peter C. Fishburn & Ralph E. Steuer & Stanley Zionts & Kalyanmoy Deb, 2008. "Multiple Criteria Decision Making, Multiattribute Utility Theory: Recent Accomplishments and What Lies Ahead," Management Science, INFORMS, vol. 54(7), pages 1336-1349, July.
    18. Melissa Gardenghi & Trinidad Gómez & Francisca Miguel & Margaret M. Wiecek, 2011. "Algebra of Efficient Sets for Multiobjective Complex Systems," Journal of Optimization Theory and Applications, Springer, vol. 149(2), pages 385-410, May.
    19. Klamroth, Kathrin & Stiglmayr, Michael & Sudhoff, Julia, 2023. "Ordinal optimization through multi-objective reformulation," European Journal of Operational Research, Elsevier, vol. 311(2), pages 427-443.
    20. Stephan Helfrich & Tyler Perini & Pascal Halffmann & Natashia Boland & Stefan Ruzika, 2023. "Analysis of the weighted Tchebycheff weight set decomposition for multiobjective discrete optimization problems," Journal of Global Optimization, Springer, vol. 86(2), pages 417-440, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:190:y:2021:i:2:d:10.1007_s10957-021-01889-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.