IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v147y2010i1d10.1007_s10957-010-9710-5.html
   My bibliography  Save this article

Structure and Weak Sharp Minimum of the Pareto Solution Set for Piecewise Linear Multiobjective Optimization

Author

Listed:
  • X. Q. Yang

    (Hong Kong Polytechnic University)

  • N. D. Yen

    (Vietnamese Academy of Science and Technology)

Abstract

In this paper, the Pareto solution set of a piecewise linear multiobjective optimization problem in a normed space is shown to be the union of finitely many semiclosed polyhedra. If the problem is further assumed to be cone-convex, then it has the global weak sharp minimum property.

Suggested Citation

  • X. Q. Yang & N. D. Yen, 2010. "Structure and Weak Sharp Minimum of the Pareto Solution Set for Piecewise Linear Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 147(1), pages 113-124, October.
  • Handle: RePEc:spr:joptap:v:147:y:2010:i:1:d:10.1007_s10957-010-9710-5
    DOI: 10.1007/s10957-010-9710-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-010-9710-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-010-9710-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaoqiang Cai & Kok-Lay Teo & Xiaoqi Yang & Xun Yu Zhou, 2000. "Portfolio Optimization Under a Minimax Rule," Management Science, INFORMS, vol. 46(7), pages 957-972, July.
    2. Y. P. Aneja & K. P. K. Nair, 1979. "Bicriteria Transportation Problem," Management Science, INFORMS, vol. 25(1), pages 73-78, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Margarita M. L. Rodríguez & José Vicente-Pérez, 2017. "On Finite Linear Systems Containing Strict Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 131-154, April.
    2. Xi Yin Zheng & Xiaoqi Yang, 2021. "Fully Piecewise Linear Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 190(2), pages 461-490, August.
    3. Ya Ping Fang & Nan Jing Huang & Xiao Qi Yang, 2012. "Local Smooth Representations of Parametric Semiclosed Polyhedra with Applications to Sensitivity in Piecewise Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 810-839, December.
    4. Ya Ping Fang & Kaiwen Meng & Xiao Qi Yang, 2012. "Piecewise Linear Multicriteria Programs: The Continuous Case and Its Discontinuous Generalization," Operations Research, INFORMS, vol. 60(2), pages 398-409, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ya Ping Fang & Kaiwen Meng & Xiao Qi Yang, 2012. "Piecewise Linear Multicriteria Programs: The Continuous Case and Its Discontinuous Generalization," Operations Research, INFORMS, vol. 60(2), pages 398-409, April.
    2. S. Dutta & S. Acharya & Rajashree Mishra, 2016. "Genetic algorithm based fuzzy stochastic transportation programming problem with continuous random variables," OPSEARCH, Springer;Operational Research Society of India, vol. 53(4), pages 835-872, December.
    3. Zhong, Tao & Young, Rhonda, 2010. "Multiple Choice Knapsack Problem: Example of planning choice in transportation," Evaluation and Program Planning, Elsevier, vol. 33(2), pages 128-137, May.
    4. Yang, X. Q. & Goh, C. J., 1997. "A method for convex curve approximation," European Journal of Operational Research, Elsevier, vol. 97(1), pages 205-212, February.
    5. Aritra Pal & Hadi Charkhgard, 2019. "A Feasibility Pump and Local Search Based Heuristic for Bi-Objective Pure Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 115-133, February.
    6. KIKOMBA KAHUNGU, Michaël & MABELA MAKENGO MATENDO, Rostin & M. NGOIE, Ruffin-Benoît & MAKENGO MBAMBALU, Fréderic & OKITONYUMBE Y.F, Joseph, 2013. "Les fondements mathématiques pour une aide à la décision du réseau de transport aérien : cas de la République Démocratique du Congo [Mathematical Foundation for Air Traffic Network Decision Aid : C," MPRA Paper 68533, University Library of Munich, Germany, revised Mar 2013.
    7. Przybylski, Anthony & Gandibleux, Xavier, 2017. "Multi-objective branch and bound," European Journal of Operational Research, Elsevier, vol. 260(3), pages 856-872.
    8. Singh, Preetvanti & Saxena, P. K., 2003. "The multiple objective time transportation problem with additional restrictions," European Journal of Operational Research, Elsevier, vol. 146(3), pages 460-476, May.
    9. Pankaj Gupta & Mukesh Mehlawat, 2007. "An algorithm for a fuzzy transportation problem to select a new type of coal for a steel manufacturing unit," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 114-137, July.
    10. Huang, Xiaoxia, 2007. "Two new models for portfolio selection with stochastic returns taking fuzzy information," European Journal of Operational Research, Elsevier, vol. 180(1), pages 396-405, July.
    11. W. Hare & J. Nutini, 2013. "A derivative-free approximate gradient sampling algorithm for finite minimax problems," Computational Optimization and Applications, Springer, vol. 56(1), pages 1-38, September.
    12. Bo Li & Yufei Sun & Kok Lay Teo, 2022. "An analytic solution for multi-period uncertain portfolio selection problem," Fuzzy Optimization and Decision Making, Springer, vol. 21(2), pages 319-333, June.
    13. Przybylski, Anthony & Gandibleux, Xavier & Ehrgott, Matthias, 2008. "Two phase algorithms for the bi-objective assignment problem," European Journal of Operational Research, Elsevier, vol. 185(2), pages 509-533, March.
    14. Diclehan Tezcaner & Murat Köksalan, 2011. "An Interactive Algorithm for Multi-objective Route Planning," Journal of Optimization Theory and Applications, Springer, vol. 150(2), pages 379-394, August.
    15. Derbel, Bilel & Humeau, Jérémie & Liefooghe, Arnaud & Verel, Sébastien, 2014. "Distributed localized bi-objective search," European Journal of Operational Research, Elsevier, vol. 239(3), pages 731-743.
    16. Natashia Boland & Hadi Charkhgard & Martin Savelsbergh, 2015. "A Criterion Space Search Algorithm for Biobjective Mixed Integer Programming: The Triangle Splitting Method," INFORMS Journal on Computing, INFORMS, vol. 27(4), pages 597-618, November.
    17. Boland, Natashia & Charkhgard, Hadi & Savelsbergh, Martin, 2017. "The Quadrant Shrinking Method: A simple and efficient algorithm for solving tri-objective integer programs," European Journal of Operational Research, Elsevier, vol. 260(3), pages 873-885.
    18. Andrzej Jaszkiewicz & Thibaut Lust, 2017. "Proper balance between search towards and along Pareto front: biobjective TSP case study," Annals of Operations Research, Springer, vol. 254(1), pages 111-130, July.
    19. Anthony Przybylski & Xavier Gandibleux & Matthias Ehrgott, 2010. "A Recursive Algorithm for Finding All Nondominated Extreme Points in the Outcome Set of a Multiobjective Integer Programme," INFORMS Journal on Computing, INFORMS, vol. 22(3), pages 371-386, August.
    20. Sedeno-Noda, A. & Gonzalez-Martin, C. & Gutierrez, J., 2005. "The biobjective undirected two-commodity minimum cost flow problem," European Journal of Operational Research, Elsevier, vol. 164(1), pages 89-103, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:147:y:2010:i:1:d:10.1007_s10957-010-9710-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.