IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v188y2021i2d10.1007_s10957-020-01788-6.html
   My bibliography  Save this article

Trade-Off Ratio Functions for Linear and Piecewise Linear Multi-objective Optimization Problems

Author

Listed:
  • Siming Pan

    (Southwest Jiaotong University
    Officers College of People Armed Police)

  • Shaokai Lu

    (Southwest Jiaotong University)

  • Kaiwen Meng

    (Southwestern University of Finance and Economics)

  • Shengkun Zhu

    (Southwestern University of Finance and Economics)

Abstract

In this paper, we introduce the concept of trade-off ratio function, which is closely related to the well-known Geoffrion’s proper efficiency for multi-objective optimization problems, and investigate its boundedness property. For linear multi-objective optimization problems, we show that the trade-off ratio function is bounded on the efficient solution set. For piecewise linear multi-objective optimization problems, we show that all efficient solutions are always properly efficient in Borwein’s sense, and moreover, all efficient solutions are properly efficient in Geoffrion’s sense if and only if a recession condition holds. Finally, we provide an example to illustrate that the trade-off ratio function may be unbounded on the efficient solution set to piecewise linear multi-objective optimization problems, even if the recession condition holds, while it is bounded on the supported efficient solution set.

Suggested Citation

  • Siming Pan & Shaokai Lu & Kaiwen Meng & Shengkun Zhu, 2021. "Trade-Off Ratio Functions for Linear and Piecewise Linear Multi-objective Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 188(2), pages 402-419, February.
  • Handle: RePEc:spr:joptap:v:188:y:2021:i:2:d:10.1007_s10957-020-01788-6
    DOI: 10.1007/s10957-020-01788-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-020-01788-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-020-01788-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ya Ping Fang & Kaiwen Meng & Xiao Qi Yang, 2012. "Piecewise Linear Multicriteria Programs: The Continuous Case and Its Discontinuous Generalization," Operations Research, INFORMS, vol. 60(2), pages 398-409, April.
    2. Dinh The Luc, 2016. "Multiobjective Linear Programming," Springer Books, Springer, edition 1, number 978-3-319-21091-9, December.
    3. H. Isermann, 1974. "Technical Note—Proper Efficiency and the Linear Vector Maximum Problem," Operations Research, INFORMS, vol. 22(1), pages 189-191, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    2. Wassila Drici & Fatma Zohra Ouail & Mustapha Moulaï, 2018. "Optimizing a linear fractional function over the integer efficient set," Annals of Operations Research, Springer, vol. 267(1), pages 135-151, August.
    3. H. P. Benson & E. Sun, 2000. "Outcome Space Partition of the Weight Set in Multiobjective Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 105(1), pages 17-36, April.
    4. Alexander Engau, 2017. "Proper Efficiency and Tradeoffs in Multiple Criteria and Stochastic Optimization," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 119-134, January.
    5. Jae Hyoung Lee & Nithirat Sisarat & Liguo Jiao, 2021. "Multi-objective convex polynomial optimization and semidefinite programming relaxations," Journal of Global Optimization, Springer, vol. 80(1), pages 117-138, May.
    6. Jesús A. De Loera & Raymond Hemmecke & Matthias Köppe, 2009. "Pareto Optima of Multicriteria Integer Linear Programs," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 39-48, February.
    7. Margarita M. L. Rodríguez & José Vicente-Pérez, 2017. "On Finite Linear Systems Containing Strict Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 131-154, April.
    8. Anthony Przybylski & Xavier Gandibleux & Matthias Ehrgott, 2010. "A Recursive Algorithm for Finding All Nondominated Extreme Points in the Outcome Set of a Multiobjective Integer Programme," INFORMS Journal on Computing, INFORMS, vol. 22(3), pages 371-386, August.
    9. V. Preda & I. Chiţescu, 1999. "On Constraint Qualification in Multiobjective Optimization Problems: Semidifferentiable Case," Journal of Optimization Theory and Applications, Springer, vol. 100(2), pages 417-433, February.
    10. Eduardo Camponogara & Sarosh N. Talukdar, 2005. "Designing Communication Networks to Decompose Network Control Problems," INFORMS Journal on Computing, INFORMS, vol. 17(2), pages 207-223, May.
    11. Erin K. Doolittle & Hervé L. M. Kerivin & Margaret M. Wiecek, 2018. "Robust multiobjective optimization with application to Internet routing," Annals of Operations Research, Springer, vol. 271(2), pages 487-525, December.
    12. Alexander Engau, 2015. "Definition and Characterization of Geoffrion Proper Efficiency for Real Vector Optimization with Infinitely Many Criteria," Journal of Optimization Theory and Applications, Springer, vol. 165(2), pages 439-457, May.
    13. Mehdi Allahdadi & Aida Batamiz, 2021. "Generation of some methods for solving interval multi-objective linear programming models," OPSEARCH, Springer;Operational Research Society of India, vol. 58(4), pages 1077-1115, December.
    14. Johannes M. Schumacher, 2018. "A Multi-Objective Interpretation of Optimal Transport," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 94-119, January.
    15. Xi Yin Zheng & Xiaoqi Yang, 2021. "Fully Piecewise Linear Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 190(2), pages 461-490, August.
    16. Zhao, Meng & Wang, Yajun & Zhang, Xueyi & Xu, Chang, 2023. "Online doctor-patient dynamic stable matching model based on regret theory under incomplete information," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    17. Soylu, Banu, 2018. "The search-and-remove algorithm for biobjective mixed-integer linear programming problems," European Journal of Operational Research, Elsevier, vol. 268(1), pages 281-299.
    18. Daniel Jornada & V. Jorge Leon, 2020. "Filtering Algorithms for Biobjective Mixed Binary Linear Optimization Problems with a Multiple-Choice Constraint," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 57-73, January.
    19. Nguyen Ngoc Luan & Jen-Chih Yao, 2019. "Generalized polyhedral convex optimization problems," Journal of Global Optimization, Springer, vol. 75(3), pages 789-811, November.
    20. N. Mahdavi-Amiri & F. Salehi Sadaghiani, 2017. "Strictly feasible solutions and strict complementarity in multiple objective linear optimization," 4OR, Springer, vol. 15(3), pages 303-326, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:188:y:2021:i:2:d:10.1007_s10957-020-01788-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.