IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v188y2021i2d10.1007_s10957-020-01793-9.html
   My bibliography  Save this article

Convergent Inexact Penalty Decomposition Methods for Cardinality-Constrained Problems

Author

Listed:
  • Matteo Lapucci

    (Università degli Studi di Firenze)

  • Tommaso Levato

    (Università degli Studi di Firenze)

  • Marco Sciandrone

    (Università degli Studi di Firenze)

Abstract

In this manuscript, we consider the problem of minimizing a smooth function with cardinality constraint, i.e., the constraint requiring that the -norm of the vector of variables cannot exceed a given threshold value. A well-known approach of the literature is represented by the class of penalty decomposition methods, where a sequence of penalty subproblems, depending on the original variables and new variables, are inexactly solved by a two-block decomposition method. The inner iterates of the decomposition method require to perform exact minimizations with respect to the two blocks of variables. The computation of the global minimum with respect to the original variables may be prohibitive in the case of nonconvex objective function. In order to overcome this nontrivial issue, we propose a modified penalty decomposition method, where the exact minimizations with respect to the original variables are replaced by suitable line searches along gradient-related directions. We also present a derivative-free penalty decomposition algorithm for black-box optimization. We state convergence results of the proposed methods, and we report the results of preliminary computational experiments.

Suggested Citation

  • Matteo Lapucci & Tommaso Levato & Marco Sciandrone, 2021. "Convergent Inexact Penalty Decomposition Methods for Cardinality-Constrained Problems," Journal of Optimization Theory and Applications, Springer, vol. 188(2), pages 473-496, February.
  • Handle: RePEc:spr:joptap:v:188:y:2021:i:2:d:10.1007_s10957-020-01793-9
    DOI: 10.1007/s10957-020-01793-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-020-01793-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-020-01793-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leonardo Di Gangi & M. Lapucci & F. Schoen & A. Sortino, 2019. "An efficient optimization approach for best subset selection in linear regression, with application to model selection and fitting in autoregressive time-series," Computational Optimization and Applications, Springer, vol. 74(3), pages 919-948, December.
    2. Miyashiro, Ryuhei & Takano, Yuichi, 2015. "Mixed integer second-order cone programming formulations for variable selection in linear regression," European Journal of Operational Research, Elsevier, vol. 247(3), pages 721-731.
    3. Toshiki Sato & Yuichi Takano & Ryuhei Miyashiro & Akiko Yoshise, 2016. "Feature subset selection for logistic regression via mixed integer optimization," Computational Optimization and Applications, Springer, vol. 64(3), pages 865-880, July.
    4. G. Liuzzi & S. Lucidi & V. Piccialli, 2016. "Exploiting derivative-free local searches in DIRECT-type algorithms for global optimization," Computational Optimization and Applications, Springer, vol. 65(2), pages 449-475, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Kanzow & Matteo Lapucci, 2023. "Inexact penalty decomposition methods for optimization problems with geometric constraints," Computational Optimization and Applications, Springer, vol. 85(3), pages 937-971, July.
    2. Matteo Lapucci & Alessio Sortino, 2024. "On the Convergence of Inexact Alternate Minimization in Problems with $$\ell _0$$ ℓ 0 Penalties," SN Operations Research Forum, Springer, vol. 5(2), pages 1-11, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leonardo Di Gangi & M. Lapucci & F. Schoen & A. Sortino, 2019. "An efficient optimization approach for best subset selection in linear regression, with application to model selection and fitting in autoregressive time-series," Computational Optimization and Applications, Springer, vol. 74(3), pages 919-948, December.
    2. Ryuta Tamura & Ken Kobayashi & Yuichi Takano & Ryuhei Miyashiro & Kazuhide Nakata & Tomomi Matsui, 2019. "Mixed integer quadratic optimization formulations for eliminating multicollinearity based on variance inflation factor," Journal of Global Optimization, Springer, vol. 73(2), pages 431-446, February.
    3. Enrico Civitelli & Matteo Lapucci & Fabio Schoen & Alessio Sortino, 2021. "An effective procedure for feature subset selection in logistic regression based on information criteria," Computational Optimization and Applications, Springer, vol. 80(1), pages 1-32, September.
    4. Serrano, Breno & Minner, Stefan & Schiffer, Maximilian & Vidal, Thibaut, 2024. "Bilevel optimization for feature selection in the data-driven newsvendor problem," European Journal of Operational Research, Elsevier, vol. 315(2), pages 703-714.
    5. Tao Xu & He Meng & Jie Zhu & Wei Wei & He Zhao & Han Yang & Zijin Li & Yuhan Wu, 2021. "Optimal Capacity Allocation of Energy Storage in Distribution Networks Considering Active/Reactive Coordination," Energies, MDPI, vol. 14(6), pages 1-24, March.
    6. M. Fernanda P. Costa & Ana Maria A. C. Rocha & Edite M. G. P. Fernandes, 2018. "Filter-based DIRECT method for constrained global optimization," Journal of Global Optimization, Springer, vol. 71(3), pages 517-536, July.
    7. Amir Ahmadi-Javid & Pooya Hoseinpour, 2022. "Convexification of Queueing Formulas by Mixed-Integer Second-Order Cone Programming: An Application to a Discrete Location Problem with Congestion," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2621-2633, September.
    8. Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.
    9. Kimia Keshanian & Daniel Zantedeschi & Kaushik Dutta, 2022. "Features Selection as a Nash-Bargaining Solution: Applications in Online Advertising and Information Systems," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2485-2501, September.
    10. Stripinis, Linas & Žilinskas, Julius & Casado, Leocadio G. & Paulavičius, Remigijus, 2021. "On MATLAB experience in accelerating DIRECT-GLce algorithm for constrained global optimization through dynamic data structures and parallelization," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    11. Siti Nor Habibah Binti Hassan & Tomohiro Niimi & Nobuo Yamashita, 2019. "Augmented Lagrangian Method with Alternating Constraints for Nonlinear Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 181(3), pages 883-904, June.
    12. Ben-Ameur, Walid & Neto, José, 2022. "New bounds for subset selection from conic relaxations," European Journal of Operational Research, Elsevier, vol. 298(2), pages 425-438.
    13. Linas Stripinis & Remigijus Paulavičius, 2023. "Novel Algorithm for Linearly Constrained Derivative Free Global Optimization of Lipschitz Functions," Mathematics, MDPI, vol. 11(13), pages 1-19, June.
    14. Nazih-Eddine Belkacem & Lakhdar Chiter & Mohammed Louaked, 2024. "A Novel Approach to Enhance DIRECT -Type Algorithms for Hyper-Rectangle Identification," Mathematics, MDPI, vol. 12(2), pages 1-24, January.
    15. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2023. "Sparse optimization via vector k-norm and DC programming with an application to feature selection for support vector machines," Computational Optimization and Applications, Springer, vol. 86(2), pages 745-766, November.
    16. E. F. Campana & M. Diez & G. Liuzzi & S. Lucidi & R. Pellegrini & V. Piccialli & F. Rinaldi & A. Serani, 2018. "A multi-objective DIRECT algorithm for ship hull optimization," Computational Optimization and Applications, Springer, vol. 71(1), pages 53-72, September.
    17. Toshiki Sato & Yuichi Takano & Ryuhei Miyashiro & Akiko Yoshise, 2016. "Feature subset selection for logistic regression via mixed integer optimization," Computational Optimization and Applications, Springer, vol. 64(3), pages 865-880, July.
    18. George Drogalas & Konstantinos Petridis & Nikolaos E. Petridis & Eleni Zografidou, 2020. "Valuation of the internal audit mechanisms in the decision support department of the local government organizations using mathematical programming," Annals of Operations Research, Springer, vol. 294(1), pages 267-280, November.
    19. Donald R. Jones & Joaquim R. R. A. Martins, 2021. "The DIRECT algorithm: 25 years Later," Journal of Global Optimization, Springer, vol. 79(3), pages 521-566, March.
    20. Noriyoshi Sukegawa & Shohei Suzuki & Yoshiko Ikebe & Yoshito Hirata, 2024. "On Computing Medians of Marked Point Process Data Under Edit Distance," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 178-193, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:188:y:2021:i:2:d:10.1007_s10957-020-01793-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.