IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v182y2019i2d10.1007_s10957-019-01525-8.html
   My bibliography  Save this article

A Partially Inexact Proximal Alternating Direction Method of Multipliers and Its Iteration-Complexity Analysis

Author

Listed:
  • Vando A. Adona

    (Universidade Federal de Goiás)

  • Max L. N. Gonçalves

    (Universidade Federal de Goiás)

  • Jefferson G. Melo

    (Universidade Federal de Goiás)

Abstract

This paper proposes a partially inexact proximal alternating direction method of multipliers for computing approximate solutions of a linearly constrained convex optimization problem. This method allows its first subproblem to be solved inexactly using a relative approximate criterion, whereas a proximal term is added to its second subproblem in order to simplify it. A stepsize parameter is included in the updating rule of the Lagrangian multiplier to improve its computational performance. Pointwise and ergodic iteration-complexity bounds for the proposed method are established. To the best of our knowledge, this is the first time that complexity results for an inexact alternating direction method of multipliers with relative error criteria have been analyzed. Some preliminary numerical experiments are reported to illustrate the advantages of the new method.

Suggested Citation

  • Vando A. Adona & Max L. N. Gonçalves & Jefferson G. Melo, 2019. "A Partially Inexact Proximal Alternating Direction Method of Multipliers and Its Iteration-Complexity Analysis," Journal of Optimization Theory and Applications, Springer, vol. 182(2), pages 640-666, August.
  • Handle: RePEc:spr:joptap:v:182:y:2019:i:2:d:10.1007_s10957-019-01525-8
    DOI: 10.1007/s10957-019-01525-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-019-01525-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-019-01525-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Max L. N. Gonçalves & Maicon Marques Alves & Jefferson G. Melo, 2018. "Pointwise and Ergodic Convergence Rates of a Variable Metric Proximal Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 177(2), pages 448-478, May.
    2. Jonathan Eckstein & Wang Yao, 2017. "Approximate ADMM algorithms derived from Lagrangian splitting," Computational Optimization and Applications, Springer, vol. 68(2), pages 363-405, November.
    3. Gonçalves, M.L.N., 2018. "On the pointwise iteration-complexity of a dynamic regularized ADMM with over-relaxation stepsize," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 315-325.
    4. M. H. Xu, 2007. "Proximal Alternating Directions Method for Structured Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 134(1), pages 107-117, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunier Bello-Cruz & Max L. N. Gonçalves & Nathan Krislock, 2023. "On FISTA with a relative error rule," Computational Optimization and Applications, Springer, vol. 84(2), pages 295-318, March.
    2. V. A. Adona & M. L. N. Gonçalves & J. G. Melo, 2020. "An inexact proximal generalized alternating direction method of multipliers," Computational Optimization and Applications, Springer, vol. 76(3), pages 621-647, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. V. A. Adona & M. L. N. Gonçalves & J. G. Melo, 2020. "An inexact proximal generalized alternating direction method of multipliers," Computational Optimization and Applications, Springer, vol. 76(3), pages 621-647, July.
    2. Jiaxin Xie, 2018. "On inexact ADMMs with relative error criteria," Computational Optimization and Applications, Springer, vol. 71(3), pages 743-765, December.
    3. William W. Hager & Hongchao Zhang, 2020. "Convergence rates for an inexact ADMM applied to separable convex optimization," Computational Optimization and Applications, Springer, vol. 77(3), pages 729-754, December.
    4. Bingsheng He & Feng Ma & Xiaoming Yuan, 2020. "Optimally linearizing the alternating direction method of multipliers for convex programming," Computational Optimization and Applications, Springer, vol. 75(2), pages 361-388, March.
    5. William W. Hager & Hongchao Zhang, 2019. "Inexact alternating direction methods of multipliers for separable convex optimization," Computational Optimization and Applications, Springer, vol. 73(1), pages 201-235, May.
    6. Z. K. Jiang & X. M. Yuan, 2010. "New Parallel Descent-like Method for Solving a Class of Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 145(2), pages 311-323, May.
    7. Min Tao, 2020. "Convergence study of indefinite proximal ADMM with a relaxation factor," Computational Optimization and Applications, Springer, vol. 77(1), pages 91-123, September.
    8. Min Tao & Xiaoming Yuan, 2018. "On Glowinski’s Open Question on the Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 163-196, October.
    9. M. Marques Alves & Jonathan Eckstein & Marina Geremia & Jefferson G. Melo, 2020. "Relative-error inertial-relaxed inexact versions of Douglas-Rachford and ADMM splitting algorithms," Computational Optimization and Applications, Springer, vol. 75(2), pages 389-422, March.
    10. Cesare Molinari & Juan Peypouquet, 2018. "Lagrangian Penalization Scheme with Parallel Forward–Backward Splitting," Journal of Optimization Theory and Applications, Springer, vol. 177(2), pages 413-447, May.
    11. M. H. Xu & T. Wu, 2011. "A Class of Linearized Proximal Alternating Direction Methods," Journal of Optimization Theory and Applications, Springer, vol. 151(2), pages 321-337, November.
    12. V. A. Adona & M. L. N. Gonçalves & J. G. Melo, 2019. "Iteration-complexity analysis of a generalized alternating direction method of multipliers," Journal of Global Optimization, Springer, vol. 73(2), pages 331-348, February.
    13. Hongjin He & Chen Ling & Hong-Kun Xu, 2015. "A Relaxed Projection Method for Split Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 166(1), pages 213-233, July.
    14. Yunier Bello-Cruz & Max L. N. Gonçalves & Nathan Krislock, 2023. "On FISTA with a relative error rule," Computational Optimization and Applications, Springer, vol. 84(2), pages 295-318, March.
    15. Juan Peypouquet, 2012. "Coupling the Gradient Method with a General Exterior Penalization Scheme for Convex Minimization," Journal of Optimization Theory and Applications, Springer, vol. 153(1), pages 123-138, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:182:y:2019:i:2:d:10.1007_s10957-019-01525-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.