IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v145y2010i2d10.1007_s10957-009-9619-z.html
   My bibliography  Save this article

New Parallel Descent-like Method for Solving a Class of Variational Inequalities

Author

Listed:
  • Z. K. Jiang

    (HuaiHai Institute of Technology)

  • X. M. Yuan

    (Hong Kong Baptist University)

Abstract

To solve a class of variational inequalities with separable structures, some classical methods such as the augmented Lagrangian method and the alternating direction methods require solving two subvariational inequalities at each iteration. The most recent work (B.S. He in Comput. Optim. Appl. 42(2):195–212, 2009) improved these classical methods by allowing the subvariational inequalities arising at each iteration to be solved in parallel, at the price of executing an additional descent step. This paper aims at developing this strategy further by refining the descent directions in the descent steps, while preserving the practical characteristics suitable for parallel computing. Convergence of the new parallel descent-like method is proved under the same mild assumptions on the problem data.

Suggested Citation

  • Z. K. Jiang & X. M. Yuan, 2010. "New Parallel Descent-like Method for Solving a Class of Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 145(2), pages 311-323, May.
  • Handle: RePEc:spr:joptap:v:145:y:2010:i:2:d:10.1007_s10957-009-9619-z
    DOI: 10.1007/s10957-009-9619-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-009-9619-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-009-9619-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B. S. He & H. Yang & S. L. Wang, 2000. "Alternating Direction Method with Self-Adaptive Penalty Parameters for Monotone Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 106(2), pages 337-356, August.
    2. D.R. Han & H.K. Lo, 2002. "New Alternating Direction Method for a Class of Nonlinear Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 112(3), pages 549-560, March.
    3. Bing-Sheng He, 2009. "Parallel splitting augmented Lagrangian methods for monotone structured variational inequalities," Computational Optimization and Applications, Springer, vol. 42(2), pages 195-212, March.
    4. M. H. Xu, 2007. "Proximal Alternating Directions Method for Structured Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 134(1), pages 107-117, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenxing Zhang & Deren Han & Xiaoming Yuan, 2012. "An efficient simultaneous method for the constrained multiple-sets split feasibility problem," Computational Optimization and Applications, Springer, vol. 52(3), pages 825-843, July.
    2. Min Tao & Xiaoming Yuan, 2012. "An inexact parallel splitting augmented Lagrangian method for monotone variational inequalities with separable structures," Computational Optimization and Applications, Springer, vol. 52(2), pages 439-461, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kun Jin & Yevgeniy Vorobeychik & Mingyan Liu, 2021. "Multi-Scale Games: Representing and Solving Games on Networks with Group Structure," Papers 2101.08314, arXiv.org.
    2. Hongjin He & Chen Ling & Hong-Kun Xu, 2015. "A Relaxed Projection Method for Split Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 166(1), pages 213-233, July.
    3. Zhao, Baining & Qian, Tong & Li, Weiwei & Xin, Yanli & Zhao, Wei & Lin, Zekang & Tang, Wenhu & Jin, Xin & Cao, Wangzhang & Pan, Tingzhe, 2024. "Fast distributed co-optimization of electricity and natural gas systems hedging against wind fluctuation and uncertainty," Energy, Elsevier, vol. 298(C).
    4. William W. Hager & Hongchao Zhang, 2020. "Convergence rates for an inexact ADMM applied to separable convex optimization," Computational Optimization and Applications, Springer, vol. 77(3), pages 729-754, December.
    5. Lo, Hong K. & Szeto, W.Y., 2005. "Road pricing modeling for hyper-congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(7-9), pages 705-722.
    6. Myungjin Kim & Li Wang & Yuyu Zhou, 2021. "Spatially Varying Coefficient Models with Sign Preservation of the Coefficient Functions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 367-386, September.
    7. Dolgopolik, Maksim V., 2021. "The alternating direction method of multipliers for finding the distance between ellipsoids," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    8. Yao, Yu & Zhu, Xiaoning & Dong, Hongyu & Wu, Shengnan & Wu, Hailong & Carol Tong, Lu & Zhou, Xuesong, 2019. "ADMM-based problem decomposition scheme for vehicle routing problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 156-174.
    9. Bingsheng He & Feng Ma & Xiaoming Yuan, 2020. "Optimally linearizing the alternating direction method of multipliers for convex programming," Computational Optimization and Applications, Springer, vol. 75(2), pages 361-388, March.
    10. Liusheng Hou & Hongjin He & Junfeng Yang, 2016. "A partially parallel splitting method for multiple-block separable convex programming with applications to robust PCA," Computational Optimization and Applications, Springer, vol. 63(1), pages 273-303, January.
    11. Yiyin Cao & Yin Chen & Chuangyin Dang, 2024. "A Variant of the Logistic Quantal Response Equilibrium to Select a Perfect Equilibrium," Journal of Optimization Theory and Applications, Springer, vol. 201(3), pages 1026-1062, June.
    12. Min Zhang & Deren Han & Gang Qian & Xihong Yan, 2012. "A New Decomposition Method for Variational Inequalities with Linear Constraints," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 675-695, March.
    13. Lijun Xu & Bo Yu & Yin Zhang, 2017. "An alternating direction and projection algorithm for structure-enforced matrix factorization," Computational Optimization and Applications, Springer, vol. 68(2), pages 333-362, November.
    14. Zheng Peng & Wenxing Zhu, 2013. "An Alternating Direction Method for Nash Equilibrium of Two-Person Games with Alternating Offers," Journal of Optimization Theory and Applications, Springer, vol. 157(2), pages 533-551, May.
    15. Li, Min & Liao, Li-Zhi & Yuan, Xiao-ming, 2008. "A modified descent method for co-coercive variational inequalities," European Journal of Operational Research, Elsevier, vol. 189(2), pages 310-323, September.
    16. Hou, Yanqiu & Bao, Minglei & Sang, Maosheng & Ding, Yi, 2024. "A market framework to exploit the multi-energy operating reserve of smart energy hubs in the integrated electricity-gas systems," Applied Energy, Elsevier, vol. 357(C).
    17. Liu, Zhiyuan & Zhang, Honggang & Zhang, Kai & Zhou, Zihan, 2023. "Integrating alternating direction method of multipliers and bush for solving the traffic assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    18. S. L. Wang & L. Z. Liao, 2001. "Decomposition Method with a Variable Parameter for a Class of Monotone Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 109(2), pages 415-429, May.
    19. Bin Gao & Feng Ma, 2018. "Symmetric Alternating Direction Method with Indefinite Proximal Regularization for Linearly Constrained Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 178-204, January.
    20. Siu, Barbara W.Y. & Lo, Hong K., 2008. "Doubly uncertain transportation network: Degradable capacity and stochastic demand," European Journal of Operational Research, Elsevier, vol. 191(1), pages 166-181, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:145:y:2010:i:2:d:10.1007_s10957-009-9619-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.