IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v180y2019i3d10.1007_s10957-018-1403-5.html
   My bibliography  Save this article

Null, Nullifying, and Necessary Agents: Parallel Characterizations of the Banzhaf and Shapley Values

Author

Listed:
  • José M. Alonso-Meijide

    (Universidade de Santiago de Compostela)

  • Julián Costa

    (Universidade da Coruña)

  • Ignacio García-Jurado

    (Universidade da Coruña)

Abstract

In a cooperative game, we consider three special kinds of agents: null, nullifying, and necessary agents. A coalition with a null agent receives the same payoff if this agent leaves the coalition, a coalition with a nullifying agent receives nothing, and a coalition without a necessary agent also receives nothing. The null agent property proposes zero payoff to any null agent. We introduce new properties that propose payoffs for nullifying and necessary players. With these three properties and additivity, we obtain new characterizations of the Banzhaf and Shapley values.

Suggested Citation

  • José M. Alonso-Meijide & Julián Costa & Ignacio García-Jurado, 2019. "Null, Nullifying, and Necessary Agents: Parallel Characterizations of the Banzhaf and Shapley Values," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 1027-1035, March.
  • Handle: RePEc:spr:joptap:v:180:y:2019:i:3:d:10.1007_s10957-018-1403-5
    DOI: 10.1007/s10957-018-1403-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-018-1403-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-018-1403-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stefano Moretti & Fioravante Patrone, 2008. "Rejoinder on: Transversality of the Shapley value," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(1), pages 60-61, July.
    2. Stefano Moretti & Fioravante Patrone, 2008. "Transversality of the Shapley value," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(1), pages 1-41, July.
    3. Kamijo, Yoshio & Kongo, Takumi, 2012. "Whose deletion does not affect your payoff? The difference between the Shapley value, the egalitarian value, the solidarity value, and the Banzhaf value," European Journal of Operational Research, Elsevier, vol. 216(3), pages 638-646.
    4. van den Brink, Rene, 2007. "Null or nullifying players: The difference between the Shapley value and equal division solutions," Journal of Economic Theory, Elsevier, vol. 136(1), pages 767-775, September.
    5. Guillermo Owen, 1975. "Multilinear extensions and the banzhaf value," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 22(4), pages 741-750, December.
    6. Wenna Wang & Hao Sun & Rene (J.R.) van den Brink & Genjiu Xu, 2018. "The family of ideal values for cooperative games," Tinbergen Institute Discussion Papers 18-002/II, Tinbergen Institute.
    7. Feltkamp, Vincent, 1995. "Alternative Axiomatic Characterizations of the Shapley and Banzhaf Values," International Journal of Game Theory, Springer;Game Theory Society, vol. 24(2), pages 179-186.
    8. Casajus, André & Huettner, Frank, 2014. "Null, nullifying, or dummifying players: The difference between the Shapley value, the equal division value, and the equal surplus division value," Economics Letters, Elsevier, vol. 122(2), pages 167-169.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manfred Besner, 2020. "Parallel axiomatizations of weighted and multiweighted Shapley values, random order values, and the Harsanyi set," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 55(1), pages 193-212, June.
    2. Jun Su & Yuan Liang & Guangmin Wang & Genjiu Xu, 2020. "Characterizations, Potential, and an Implementation of the Shapley-Solidarity Value," Mathematics, MDPI, vol. 8(11), pages 1-20, November.
    3. Margarita Domènech & José Miguel Giménez & María Albina Puente, 2022. "Weak null, necessary defender and necessary detractor players: characterizations of the Banzhaf and the Shapley bisemivalues," Annals of Operations Research, Springer, vol. 318(2), pages 889-910, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Margarita Domènech & José Miguel Giménez & María Albina Puente, 2022. "Weak null, necessary defender and necessary detractor players: characterizations of the Banzhaf and the Shapley bisemivalues," Annals of Operations Research, Springer, vol. 318(2), pages 889-910, November.
    2. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2015. "Preserving or removing special players: What keeps your payoff unchanged in TU-games?," Mathematical Social Sciences, Elsevier, vol. 73(C), pages 23-31.
    3. Sylvain Ferrières, 2017. "Nullified equal loss property and equal division values," Theory and Decision, Springer, vol. 83(3), pages 385-406, October.
    4. J. M. Alonso-Meijide & J. Costa & I. García-Jurado & J. C. Gonçalves-Dosantos, 2020. "On egalitarian values for cooperative games with a priori unions," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 672-688, October.
    5. Calleja, Pere & Llerena Garrés, Francesc, 2016. "Consistency distinguishes the (weighted) Shapley value, the (weighted) surplus division value and the prenucleolus," Working Papers 2072/266577, Universitat Rovira i Virgili, Department of Economics.
    6. van den Brink, René & González-Arangüena, Enrique & Manuel, Conrado & del Pozo, Mónica, 2014. "Order monotonic solutions for generalized characteristic functions," European Journal of Operational Research, Elsevier, vol. 238(3), pages 786-796.
    7. Béal, Sylvain & Moyouwou, Issofa & Rémila, Eric & Solal, Philippe, 2020. "Cooperative games on intersection closed systems and the Shapley value," Mathematical Social Sciences, Elsevier, vol. 104(C), pages 15-22.
    8. Sylvain Béal & Eric Rémila & Philippe Solal, 2017. "Axiomatization and implementation of a class of solidarity values for TU-games," Theory and Decision, Springer, vol. 83(1), pages 61-94, June.
    9. Zeguang Cui & Erfang Shan & Wenrong Lyu, 2024. "Differential marginality, inessential games and convex combinations of values," Theory and Decision, Springer, vol. 96(3), pages 463-475, May.
    10. J. M. Alonso-Meijide & J. Costa & I. García-Jurado & J. C. Gonçalves-Dosantos, 2023. "On egalitarian values for cooperative games with level structures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 98(1), pages 57-73, August.
    11. Algaba, Encarnación & Béal, Sylvain & Fragnelli, Vito & Llorca, Natividad & Sánchez-Soriano, Joaquin, 2019. "Relationship between labeled network games and other cooperative games arising from attributes situations," Economics Letters, Elsevier, vol. 185(C).
    12. Zou, Zhengxing & van den Brink, René, 2020. "Equal loss under separatorization and egalitarian values," Economics Letters, Elsevier, vol. 194(C).
    13. Koji Yokote, 2015. "Weak addition invariance and axiomatization of the weighted Shapley value," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(2), pages 275-293, May.
    14. Zhengxing Zou & René Brink & Youngsub Chun & Yukihiko Funaki, 2021. "Axiomatizations of the proportional division value," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 57(1), pages 35-62, July.
    15. José M. Jiménez Gómez & María del Carmen Marco Gil & Pedro Gadea Blanco, 2010. "Some game-theoretic grounds for meeting people half-way," Working Papers. Serie AD 2010-04, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    16. Casajus, André & Huettner, Frank, 2014. "Null, nullifying, or dummifying players: The difference between the Shapley value, the equal division value, and the equal surplus division value," Economics Letters, Elsevier, vol. 122(2), pages 167-169.
    17. Béal, Sylvain & Ferrières, Sylvain & Rémila, Eric & Solal, Philippe, 2018. "The proportional Shapley value and applications," Games and Economic Behavior, Elsevier, vol. 108(C), pages 93-112.
    18. Kouladoum, Jean-Claude, 2019. "Décision du mariage des ménages tchadiens et Caractéristiques socio-économiques [Marriage decision of Chadian households and socio-economic characteristics]," MPRA Paper 91590, University Library of Munich, Germany.
    19. Perea, Federico & Puerto, Justo & Fernández, Francisco R., 2012. "Avoiding unfairness of Owen allocations in linear production processes," European Journal of Operational Research, Elsevier, vol. 220(1), pages 125-131.
    20. Takumi Kongo, 2020. "Similarities in axiomatizations: equal surplus division value and first-price auctions," Review of Economic Design, Springer;Society for Economic Design, vol. 24(3), pages 199-213, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:180:y:2019:i:3:d:10.1007_s10957-018-1403-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.