Data-Driven Robust Chance Constrained Problems: A Mixture Model Approach
Author
Abstract
Suggested Citation
DOI: 10.1007/s10957-018-1376-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hall, Joyce A. & Brorsen, B. Wade & Irwin, Scott H., 1989.
"The Distribution of Futures Prices: A Test of the Stable Paretian and Mixture of Normals Hypotheses,"
Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 24(1), pages 105-116, March.
- Hall, Joyce A. & Brorsen, B. Wade & Irwin, Scott H., 1987. "The Distribution of Futures Prices: A Test of the Stable Paretian and Mixture of Normals Hypotheses," 1987 Annual Meeting, August 2-5, East Lansing, Michigan 269968, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
- R. Jagannathan, 1974. "Chance-Constrained Programming with Joint Constraints," Operations Research, INFORMS, vol. 22(2), pages 358-372, April.
- Zhu, Shushang & Fan, Minjie & Li, Duan, 2014. "Portfolio management with robustness in both prediction and decision: A mixture model based learning approach," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 1-25.
- G. C. Calafiore & L. El Ghaoui, 2006. "On Distributionally Robust Chance-Constrained Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 130(1), pages 1-22, July.
- ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
- Shushang Zhu & Masao Fukushima, 2009. "Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management," Operations Research, INFORMS, vol. 57(5), pages 1155-1168, October.
- Bruce L. Miller & Harvey M. Wagner, 1965. "Chance Constrained Programming with Joint Constraints," Operations Research, INFORMS, vol. 13(6), pages 930-945, December.
- McCauley,Joseph L., 2009. "Dynamics of Markets," Cambridge Books, Cambridge University Press, number 9780521429627, October.
- Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
- Grani A. Hanasusanto & Vladimir Roitch & Daniel Kuhn & Wolfram Wiesemann, 2017. "Ambiguous Joint Chance Constraints Under Mean and Dispersion Information," Operations Research, INFORMS, vol. 65(3), pages 751-767, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Berndt Jesenko & Christian Schlögl, 2021. "The effect of web of science subject categories on clustering: the case of data-driven methods in business and economic sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6785-6801, August.
- Shen Peng & Jie Jiang, 2021. "Stochastic mathematical programs with probabilistic complementarity constraints: SAA and distributionally robust approaches," Computational Optimization and Applications, Springer, vol. 80(1), pages 153-184, September.
- Zhiping Chen & Shen Peng & Abdel Lisser, 2020. "A sparse chance constrained portfolio selection model with multiple constraints," Journal of Global Optimization, Springer, vol. 77(4), pages 825-852, August.
- Jiang, Jie & Peng, Shen, 2024. "Mathematical programs with distributionally robust chance constraints: Statistical robustness, discretization and reformulation," European Journal of Operational Research, Elsevier, vol. 313(2), pages 616-627.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhiping Chen & Shen Peng & Abdel Lisser, 2020. "A sparse chance constrained portfolio selection model with multiple constraints," Journal of Global Optimization, Springer, vol. 77(4), pages 825-852, August.
- L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
- Marla, Lavanya & Rikun, Alexander & Stauffer, Gautier & Pratsini, Eleni, 2020. "Robust modeling and planning: Insights from three industrial applications," Operations Research Perspectives, Elsevier, vol. 7(C).
- Jiang, Jie & Peng, Shen, 2024. "Mathematical programs with distributionally robust chance constraints: Statistical robustness, discretization and reformulation," European Journal of Operational Research, Elsevier, vol. 313(2), pages 616-627.
- Vishal Gupta, 2019. "Near-Optimal Bayesian Ambiguity Sets for Distributionally Robust Optimization," Management Science, INFORMS, vol. 65(9), pages 4242-4260, September.
- Roos, Ernst & den Hertog, Dick, 2019. "Reducing conservatism in robust optimization," Other publications TiSEM ad0238cd-de7a-4366-b487-b, Tilburg University, School of Economics and Management.
- Grani A. Hanasusanto & Vladimir Roitch & Daniel Kuhn & Wolfram Wiesemann, 2017. "Ambiguous Joint Chance Constraints Under Mean and Dispersion Information," Operations Research, INFORMS, vol. 65(3), pages 751-767, June.
- Guanglin Xu & Samuel Burer, 2018. "A data-driven distributionally robust bound on the expected optimal value of uncertain mixed 0-1 linear programming," Computational Management Science, Springer, vol. 15(1), pages 111-134, January.
- Aigner, Kevin-Martin & Clarner, Jan-Patrick & Liers, Frauke & Martin, Alexander, 2022. "Robust approximation of chance constrained DC optimal power flow under decision-dependent uncertainty," European Journal of Operational Research, Elsevier, vol. 301(1), pages 318-333.
- Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
- Dawen Yan & Xiaohui Zhang & Mingzheng Wang, 2021. "A robust bank asset allocation model integrating credit-rating migration risk and capital adequacy ratio regulations," Annals of Operations Research, Springer, vol. 299(1), pages 659-710, April.
- Huan Xu & Constantine Caramanis & Shie Mannor, 2012. "Optimization Under Probabilistic Envelope Constraints," Operations Research, INFORMS, vol. 60(3), pages 682-699, June.
- Fengmin Xu & Meihua Wang & Yu-Hong Dai & Dachuan Xu, 2018. "A sparse enhanced indexation model with chance and cardinality constraints," Journal of Global Optimization, Springer, vol. 70(1), pages 5-25, January.
- Hua Sun & Ziyou Gao & W. Szeto & Jiancheng Long & Fangxia Zhao, 2014. "A Distributionally Robust Joint Chance Constrained Optimization Model for the Dynamic Network Design Problem under Demand Uncertainty," Networks and Spatial Economics, Springer, vol. 14(3), pages 409-433, December.
- Zhu, Bo & Zhang, Tianlun, 2021. "Long-term wealth growth portfolio allocation under parameter uncertainty: A non-conservative robust approach," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
- Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.
- Yue Zhao & Zhi Chen & Zhenzhen Zhang, 2023. "Distributionally Robust Chance-Constrained p -Hub Center Problem," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1361-1382, November.
- Arash Gourtani & Huifu Xu & David Pozo & Tri-Dung Nguyen, 2016. "Robust unit commitment with $$n-1$$ n - 1 security criteria," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(3), pages 373-408, June.
- Shen Peng & Jie Jiang, 2021. "Stochastic mathematical programs with probabilistic complementarity constraints: SAA and distributionally robust approaches," Computational Optimization and Applications, Springer, vol. 80(1), pages 153-184, September.
- Ernst Roos & Dick den Hertog, 2020. "Reducing Conservatism in Robust Optimization," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1109-1127, October.
More about this item
Keywords
Data-driven; Mixture distribution; Distributionally robust optimization; Chance constrained problem; Convex approximation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:179:y:2018:i:3:d:10.1007_s10957-018-1376-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.