IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v22y1974i2p358-372.html
   My bibliography  Save this article

Chance-Constrained Programming with Joint Constraints

Author

Listed:
  • R. Jagannathan

    (Columbia University, New York, New York)

Abstract

Miller and Wagner have shown that a deterministic equivalent of a joint chance-constrained programming model with independent random right-hand-side elements is a concave programming problem. This paper obtains similar equivalents for chance-constrained programming models with coefficient matrices whose elements are normally distributed and with dependent random right-hand-side elements.

Suggested Citation

  • R. Jagannathan, 1974. "Chance-Constrained Programming with Joint Constraints," Operations Research, INFORMS, vol. 22(2), pages 358-372, April.
  • Handle: RePEc:inm:oropre:v:22:y:1974:i:2:p:358-372
    DOI: 10.1287/opre.22.2.358
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.22.2.358
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.22.2.358?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aigner, Kevin-Martin & Clarner, Jan-Patrick & Liers, Frauke & Martin, Alexander, 2022. "Robust approximation of chance constrained DC optimal power flow under decision-dependent uncertainty," European Journal of Operational Research, Elsevier, vol. 301(1), pages 318-333.
    2. Zhiping Chen & Shen Peng & Jia Liu, 2018. "Data-Driven Robust Chance Constrained Problems: A Mixture Model Approach," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 1065-1085, December.
    3. Raffaello Seri & Christine Choirat, 2013. "Scenario Approximation of Robust and Chance-Constrained Programs," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 590-614, August.
    4. Adane Abebaw Gessesse & Rajashree Mishra & Mitali Madhumita Acharya & Kedar Nath Das, 2020. "Genetic algorithm based fuzzy programming approach for multi-objective linear fractional stochastic transportation problem involving four-parameter Burr distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(1), pages 93-109, February.
    5. Marla, Lavanya & Rikun, Alexander & Stauffer, Gautier & Pratsini, Eleni, 2020. "Robust modeling and planning: Insights from three industrial applications," Operations Research Perspectives, Elsevier, vol. 7(C).
    6. Cooper, W. W. & Hemphill, H. & Huang, Z. & Li, S. & Lelas, V. & Sullivan, D. W., 1997. "Survey of mathematical programming models in air pollution management," European Journal of Operational Research, Elsevier, vol. 96(1), pages 1-35, January.
    7. Zhiping Chen & Shen Peng & Abdel Lisser, 2020. "A sparse chance constrained portfolio selection model with multiple constraints," Journal of Global Optimization, Springer, vol. 77(4), pages 825-852, August.
    8. D. K. Mohanty & Avik Pradhan & M. P. Biswal, 2020. "Chance constrained programming with some non-normal continuous random variables," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1281-1298, December.
    9. Michel Minoux & Riadh Zorgati, 2019. "Sharp upper and lower bounds for maximum likelihood solutions to random Gaussian bilateral inequality systems," Journal of Global Optimization, Springer, vol. 75(3), pages 735-766, November.
    10. Willis, David B. & Whittlesey, Norman K., 1998. "The Effect Of Stochastic Irrigation Demands And Surface Water Supplies On On-Farm Water Management," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 23(1), pages 1-19, July.
    11. Rashed Khanjani-Shiraz & Salman Khodayifar & Panos M. Pardalos, 2021. "Copula theory approach to stochastic geometric programming," Journal of Global Optimization, Springer, vol. 81(2), pages 435-468, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:22:y:1974:i:2:p:358-372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.