IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v172y2017i1d10.1007_s10957-016-1020-0.html
   My bibliography  Save this article

A Note on Stability for Risk-Averse Stochastic Complementarity Problems

Author

Listed:
  • Johanna Burtscheidt

    (University of Duisburg-Essen)

  • Matthias Claus

    (University of Duisburg-Essen)

Abstract

In this paper, we propose a new approach to stochastic complementarity problems which allows to take into account various notions of risk aversion. Our model enhances the expected residual minimization formulation of Chen and Fukushima (Math Oper Res 30:1022–1038, 2005) by replacing the expectation with a more general convex, nondecreasing and law-invariant risk functional. Relevant examples of such risk functionals include the Expected Excess and the Conditional Value-at-Risk. We examine qualitative stability of the resulting one-stage stochastic optimization problem with respect to perturbations of the underlying probability measure. Considering the topology of weak convergence, we prove joint continuity of the objective function with respect to both the decision vector and the entering probability measure. By a classical result from parametric optimization, this implies upper semicontinuity of the optimal value function. Throughout the analysis, we assume for building the model that a nonlinear complementarity function fulfills a certain polynomial growth condition. We conclude the paper demonstrating that this assumption holds in the vast majority of all practically relevant cases.

Suggested Citation

  • Johanna Burtscheidt & Matthias Claus, 2017. "A Note on Stability for Risk-Averse Stochastic Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 172(1), pages 298-308, January.
  • Handle: RePEc:spr:joptap:v:172:y:2017:i:1:d:10.1007_s10957-016-1020-0
    DOI: 10.1007/s10957-016-1020-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-016-1020-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-016-1020-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaojun Chen & Masao Fukushima, 2005. "Expected Residual Minimization Method for Stochastic Linear Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 30(4), pages 1022-1038, November.
    2. Aurél Galántai, 2012. "Properties and construction of NCP functions," Computational Optimization and Applications, Springer, vol. 52(3), pages 805-824, July.
    3. Rüdiger Schultz, 2000. "Some Aspects of Stability in Stochastic Programming," Annals of Operations Research, Springer, vol. 100(1), pages 55-84, December.
    4. Kenji Hamatani & Masao Fukushima, 2011. "Pricing American options with uncertain volatility through stochastic linear complementarity models," Computational Optimization and Applications, Springer, vol. 50(2), pages 263-286, October.
    5. Zhang, Chao & Chen, Xiaojun & Sumalee, Agachai, 2011. "Robust Wardrop's user equilibrium assignment under stochastic demand and supply: Expected residual minimization approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 534-552, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liyan Xu & Bo Yu, 2014. "CVaR-constrained stochastic programming reformulation for stochastic nonlinear complementarity problems," Computational Optimization and Applications, Springer, vol. 58(2), pages 483-501, June.
    2. Yanfang Zhang & Xiaojun Chen, 2014. "Regularizations for Stochastic Linear Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 460-481, November.
    3. Min Li & Chao Zhang, 2020. "Two-Stage Stochastic Variational Inequality Arising from Stochastic Programming," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 324-343, July.
    4. M. J. Luo & G. H. Lin, 2009. "Expected Residual Minimization Method for Stochastic Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 103-116, January.
    5. Fang Lu & Shengjie Li & Jing Yang, 2015. "Convergence analysis of weighted expected residual method for nonlinear stochastic variational inequality problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(2), pages 229-242, October.
    6. Jie Jiang & Shengjie Li, 2021. "Regularized Sample Average Approximation Approach for Two-Stage Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 190(2), pages 650-671, August.
    7. G. L. Zhou & L. Caccetta, 2008. "Feasible Semismooth Newton Method for a Class of Stochastic Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 379-392, November.
    8. Zhen-Ping Yang & Gui-Hua Lin, 2021. "Variance-Based Single-Call Proximal Extragradient Algorithms for Stochastic Mixed Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 190(2), pages 393-427, August.
    9. Xiao-Juan Zhang & Xue-Wu Du & Zhen-Ping Yang & Gui-Hua Lin, 2019. "An Infeasible Stochastic Approximation and Projection Algorithm for Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 1053-1076, December.
    10. Steffen Rebennack, 2022. "Data-driven stochastic optimization for distributional ambiguity with integrated confidence region," Journal of Global Optimization, Springer, vol. 84(2), pages 255-293, October.
    11. Marco Colombo & Andreas Grothey, 2013. "A decomposition-based crash-start for stochastic programming," Computational Optimization and Applications, Springer, vol. 55(2), pages 311-340, June.
    12. Zhang, Yachao & Liu, Wei & Huang, Zhanghao & Zheng, Feng & Le, Jian & Zhu, Shu, 2021. "Distributionally robust coordination optimization scheduling for electricity-gas-transportation coupled system considering multiple uncertainties," Renewable Energy, Elsevier, vol. 163(C), pages 2037-2052.
    13. Trine Kristoffersen, 2005. "Deviation Measures in Linear Two-Stage Stochastic Programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 62(2), pages 255-274, November.
    14. Ankur Kulkarni & Uday Shanbhag, 2012. "Recourse-based stochastic nonlinear programming: properties and Benders-SQP algorithms," Computational Optimization and Applications, Springer, vol. 51(1), pages 77-123, January.
    15. Egging, Ruud, 2013. "Benders Decomposition for multi-stage stochastic mixed complementarity problems – Applied to a global natural gas market model," European Journal of Operational Research, Elsevier, vol. 226(2), pages 341-353.
    16. M. J. Luo & G. H. Lin, 2009. "Convergence Results of the ERM Method for Nonlinear Stochastic Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 142(3), pages 569-581, September.
    17. Prakash, A. Arun & Seshadri, Ravi & Srinivasan, Karthik K., 2018. "A consistent reliability-based user-equilibrium problem with risk-averse users and endogenous travel time correlations: Formulation and solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 171-198.
    18. Xu, Junxiang & Zhang, Jin & Guo, Jingni, 2021. "Contribution to the field of traffic assignment: A boundedly rational user equilibrium model with uncertain supply and demand," Socio-Economic Planning Sciences, Elsevier, vol. 74(C).
    19. Shouqiang Du & Maolin Che & Yimin Wei, 2020. "Stochastic structured tensors to stochastic complementarity problems," Computational Optimization and Applications, Springer, vol. 75(3), pages 649-668, April.
    20. Wang, Judith Y.T. & Ehrgott, Matthias & Chen, Anthony, 2014. "A bi-objective user equilibrium model of travel time reliability in a road network," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 4-15.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:172:y:2017:i:1:d:10.1007_s10957-016-1020-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.