IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v171y2016i2d10.1007_s10957-015-0815-8.html
   My bibliography  Save this article

Optimality Condition for Local Efficient Solutions of Vector Equilibrium Problems via Convexificators and Applications

Author

Listed:
  • Do Luu

    (Thang Long University)

Abstract

Fritz John and Karush–Kuhn–Tucker necessary conditions for local efficient solutions of constrained vector equilibrium problems in Banach spaces in which those solutions are regular in the sense of Ioffe via convexificators are established. Under suitable assumptions on generalized convexity, sufficient conditions are derived. Some applications to constrained vector variational inequalities and constrained vector optimization problems are also given.

Suggested Citation

  • Do Luu, 2016. "Optimality Condition for Local Efficient Solutions of Vector Equilibrium Problems via Convexificators and Applications," Journal of Optimization Theory and Applications, Springer, vol. 171(2), pages 643-665, November.
  • Handle: RePEc:spr:joptap:v:171:y:2016:i:2:d:10.1007_s10957-015-0815-8
    DOI: 10.1007/s10957-015-0815-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-015-0815-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-015-0815-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Do Luu & Dinh Hang, 2014. "Efficient solutions and optimality conditions for vector equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 79(2), pages 163-177, April.
    2. D.E. Ward & G.M. Lee, 2002. "On Relations Between Vector Optimization Problems and Vector Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 113(3), pages 583-596, June.
    3. V. Jeyakumar & D. T. Luc, 1999. "Nonsmooth Calculus, Minimality, and Monotonicity of Convexificators," Journal of Optimization Theory and Applications, Springer, vol. 101(3), pages 599-621, June.
    4. Do Luu, 2014. "Necessary and Sufficient Conditions for Efficiency Via Convexificators," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 510-526, February.
    5. J. Morgan & M. Romaniello, 2006. "Scalarization and Kuhn-Tucker-Like Conditions for Weak Vector Generalized Quasivariational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 130(2), pages 309-316, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tran Van Su, 2018. "New optimality conditions for unconstrained vector equilibrium problem in terms of contingent derivatives in Banach spaces," 4OR, Springer, vol. 16(2), pages 173-198, June.
    2. Lam Quoc Anh & Tran Quoc Duy & Le Dung Muu & Truong Van Tri, 2021. "The Tikhonov regularization for vector equilibrium problems," Computational Optimization and Applications, Springer, vol. 78(3), pages 769-792, April.
    3. Do Luu & Tran Thi Mai, 2018. "Optimality and duality in constrained interval-valued optimization," 4OR, Springer, vol. 16(3), pages 311-337, September.
    4. Tran Su, 2024. "Optimality analysis for $$\epsilon $$ ϵ -quasi solutions of optimization problems via $$\epsilon $$ ϵ -upper convexificators: a dual approach," Journal of Global Optimization, Springer, vol. 90(3), pages 651-669, November.
    5. Sajjad Kazemi & Nader Kanzi, 2018. "Constraint Qualifications and Stationary Conditions for Mathematical Programming with Non-differentiable Vanishing Constraints," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 800-819, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Do Van Luu, 2018. "Second-order necessary efficiency conditions for nonsmooth vector equilibrium problems," Journal of Global Optimization, Springer, vol. 70(2), pages 437-453, February.
    2. Do Luu & Dinh Hang, 2014. "Efficient solutions and optimality conditions for vector equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 79(2), pages 163-177, April.
    3. Balendu Bhooshan Upadhyay & Shubham Kumar Singh & Ioan Stancu-Minasian, 2024. "Constraint Qualifications and Optimality Conditions for Nonsmooth Semidefinite Multiobjective Programming Problems with Mixed Constraints Using Convexificators," Mathematics, MDPI, vol. 12(20), pages 1-21, October.
    4. Alireza Kabgani & Majid Soleimani-damaneh & Moslem Zamani, 2017. "Optimality conditions in optimization problems with convex feasible set using convexificators," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(1), pages 103-121, August.
    5. Do Luu & Tran Thi Mai, 2018. "Optimality and duality in constrained interval-valued optimization," 4OR, Springer, vol. 16(3), pages 311-337, September.
    6. X. F. Li & J. Z. Zhang, 2006. "Necessary Optimality Conditions in Terms of Convexificators in Lipschitz Optimization," Journal of Optimization Theory and Applications, Springer, vol. 131(3), pages 429-452, December.
    7. A. Kabgani & F. Lara, 2023. "Semistrictly and neatly quasiconvex programming using lower global subdifferentials," Journal of Global Optimization, Springer, vol. 86(4), pages 845-865, August.
    8. Alireza Kabgani, 2021. "Characterization of Nonsmooth Quasiconvex Functions and their Greenberg–Pierskalla’s Subdifferentials Using Semi-Quasidifferentiability notion," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 666-678, May.
    9. X. F. Li & J. Z. Zhang, 2010. "Existence and Boundedness of the Kuhn-Tucker Multipliers in Nonsmooth Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 145(2), pages 373-386, May.
    10. D.T. Luc & M.A. Noor, 2003. "Local Uniqueness of Solutions of General Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 117(1), pages 103-119, April.
    11. Felipe Serrano & Robert Schwarz & Ambros Gleixner, 2020. "On the relation between the extended supporting hyperplane algorithm and Kelley’s cutting plane algorithm," Journal of Global Optimization, Springer, vol. 78(1), pages 161-179, September.
    12. Tran Van Su, 2018. "New optimality conditions for unconstrained vector equilibrium problem in terms of contingent derivatives in Banach spaces," 4OR, Springer, vol. 16(2), pages 173-198, June.
    13. S. Li & M. Li, 2009. "Levitin–Polyak well-posedness of vector equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(1), pages 125-140, March.
    14. M. Alavi Hejazi & N. Movahedian, 2020. "A New Abadie-Type Constraint Qualification for General Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 86-101, July.
    15. Do Luu, 2014. "Necessary and Sufficient Conditions for Efficiency Via Convexificators," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 510-526, February.
    16. J. Dutta & S. Chandra, 2002. "Convexifactors, Generalized Convexity, and Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 113(1), pages 41-64, April.
    17. M. Alavi Hejazi & N. Movahedian & S. Nobakhtian, 2018. "On Constraint Qualifications and Sensitivity Analysis for General Optimization Problems via Pseudo-Jacobians," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 778-799, December.
    18. X. Gong, 2011. "Chebyshev scalarization of solutions to the vector equilibrium problems," Journal of Global Optimization, Springer, vol. 49(4), pages 607-622, April.
    19. A. Fischer & V. Jeyakumar & D. T. Luc, 2001. "Solution Point Characterizations and Convergence Analysis of a Descent Algorithm for Nonsmooth Continuous Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 110(3), pages 493-513, September.
    20. M. Oveisiha & J. Zafarani, 2012. "Vector optimization problem and generalized convexity," Journal of Global Optimization, Springer, vol. 52(1), pages 29-43, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:171:y:2016:i:2:d:10.1007_s10957-015-0815-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.