IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v169y2016i1d10.1007_s10957-016-0878-1.html
   My bibliography  Save this article

The Algebraic Structure of the Arbitrary-Order Cone

Author

Listed:
  • Baha Alzalg

    (The University of Jordan)

Abstract

We study and analyze the algebraic structure of the arbitrary-order cones. We show that, unlike popularly perceived, the arbitrary-order cone is self-dual for any order greater than or equal to 1. We establish a spectral decomposition, consider the Jordan algebra associated with this cone, and prove that this algebra forms a Euclidean Jordan algebra with a certain inner product. We generalize some important notions and properties in the Euclidean Jordan algebra of the second-order cone to the Euclidean Jordan algebra of the arbitrary-order cone.

Suggested Citation

  • Baha Alzalg, 2016. "The Algebraic Structure of the Arbitrary-Order Cone," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 32-49, April.
  • Handle: RePEc:spr:joptap:v:169:y:2016:i:1:d:10.1007_s10957-016-0878-1
    DOI: 10.1007/s10957-016-0878-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-016-0878-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-016-0878-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krokhmal, Pavlo A. & Soberanis, Policarpio, 2010. "Risk optimization with p-order conic constraints: A linear programming approach," European Journal of Operational Research, Elsevier, vol. 201(3), pages 653-671, March.
    2. PAVLO A. Krokhmal, 2007. "Higher moment coherent risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 373-387.
    3. F. Glineur & T. Terlaky, 2004. "Conic Formulation for l p -Norm Optimization," Journal of Optimization Theory and Applications, Springer, vol. 122(2), pages 285-307, August.
    4. Alexander Vinel & Pavlo Krokhmal, 2014. "On Valid Inequalities for Mixed Integer p-Order Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 439-456, February.
    5. Luca Bertazzi & Francesca Maggioni, 2015. "Solution Approaches for the Stochastic Capacitated Traveling Salesmen Location Problem with Recourse," Journal of Optimization Theory and Applications, Springer, vol. 166(1), pages 321-342, July.
    6. F. Maggioni & F. A. Potra & M. I. Bertocchi & E. Allevi, 2009. "Stochastic Second-Order Cone Programming in Mobile Ad Hoc Networks," Journal of Optimization Theory and Applications, Springer, vol. 143(2), pages 309-328, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin-He Miao & Yen-chi Roger Lin & Jein-Shan Chen, 2017. "A Note on the Paper “The Algebraic Structure of the Arbitrary-Order Cone”," Journal of Optimization Theory and Applications, Springer, vol. 173(3), pages 1066-1070, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krokhmal, Pavlo A. & Soberanis, Policarpio, 2010. "Risk optimization with p-order conic constraints: A linear programming approach," European Journal of Operational Research, Elsevier, vol. 201(3), pages 653-671, March.
    2. Maciej Rysz & Mohammad Mirghorbani & Pavlo Krokhmal & Eduardo L. Pasiliao, 2014. "On risk-averse maximum weighted subgraph problems," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 167-185, July.
    3. Alexander Vinel & Pavlo Krokhmal, 2014. "On Valid Inequalities for Mixed Integer p-Order Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 439-456, February.
    4. Maciej Rysz & Foad Mahdavi Pajouh & Pavlo Krokhmal & Eduardo L. Pasiliao, 2018. "Identifying risk-averse low-diameter clusters in graphs with stochastic vertex weights," Annals of Operations Research, Springer, vol. 262(1), pages 89-108, March.
    5. Maciej Rysz & Alexander Vinel & Pavlo Krokhmal & Eduardo L. Pasiliao, 2015. "A Scenario Decomposition Algorithm for Stochastic Programming Problems with a Class of Downside Risk Measures," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 416-430, May.
    6. Castro-Iragorri, Carlos & Gómez, Fabio & Quiceno, Nancy, 2024. "Worst-case higher moment risk measure: Addressing distributional shifts and procyclicality," Finance Research Letters, Elsevier, vol. 65(C).
    7. Robert Chares & François Glineur, 2008. "An interior-point method for the single-facility location problem with mixed norms using a conic formulation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(3), pages 383-405, December.
    8. da Costa, B. Freitas Paulo & Pesenti, Silvana M. & Targino, Rodrigo S., 2023. "Risk budgeting portfolios from simulations," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1040-1056.
    9. Manish Bansal & Yingqiu Zhang, 2021. "Scenario-based cuts for structured two-stage stochastic and distributionally robust p-order conic mixed integer programs," Journal of Global Optimization, Springer, vol. 81(2), pages 391-433, October.
    10. Righi, Marcelo Brutti & Borenstein, Denis, 2018. "A simulation comparison of risk measures for portfolio optimization," Finance Research Letters, Elsevier, vol. 24(C), pages 105-112.
    11. Amir Ahmadi-Javid & Pooya Hoseinpour, 2022. "Convexification of Queueing Formulas by Mixed-Integer Second-Order Cone Programming: An Application to a Discrete Location Problem with Congestion," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2621-2633, September.
    12. Geissel Sebastian & Sass Jörn & Seifried Frank Thomas, 2018. "Optimal expected utility risk measures," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 73-87, January.
    13. Silvia Faroni & Olivier Le Courtois & Krzysztof Ostaszewski, 2022. "Equivalent Risk Indicators: VaR, TCE, and Beyond," Risks, MDPI, vol. 10(8), pages 1-19, July.
    14. Marcelo Brutti Righi, 2019. "A composition between risk and deviation measures," Annals of Operations Research, Springer, vol. 282(1), pages 299-313, November.
    15. Alzalg, Baha, 2015. "Volumetric barrier decomposition algorithms for stochastic quadratic second-order cone programming," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 494-508.
    16. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2015. "Shortfall Deviation Risk: An alternative to risk measurement," Papers 1501.02007, arXiv.org, revised May 2016.
    17. Alexander Vinel & Pavlo A. Krokhmal, 2017. "Certainty equivalent measures of risk," Annals of Operations Research, Springer, vol. 249(1), pages 75-95, February.
    18. F. Glineur & T. Terlaky, 2004. "Conic Formulation for l p -Norm Optimization," Journal of Optimization Theory and Applications, Springer, vol. 122(2), pages 285-307, August.
    19. Shuang Chen & Li-Ping Pang & Xue-Fei Ma & Dan Li, 2016. "SAA method based on modified Newton method for stochastic variational inequality with second-order cone constraints and application in portfolio optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(1), pages 129-154, August.
    20. Elgesem, Aurora Smith & Skogen, Eline Sophie & Wang, Xin & Fagerholt, Kjetil, 2018. "A traveling salesman problem with pickups and deliveries and stochastic travel times: An application from chemical shipping," European Journal of Operational Research, Elsevier, vol. 269(3), pages 844-859.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:169:y:2016:i:1:d:10.1007_s10957-016-0878-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.