IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v133y2007i3d10.1007_s10957-007-9169-1.html
   My bibliography  Save this article

Optimality Conditions for Nonsmooth Multiobjective Optimization Using Hadamard Directional Derivatives

Author

Listed:
  • P. Q. Khanh

    (International University of Hochiminh City)

  • N. D. Tuan

    (University of Natural Sciences of Hochiminh City)

Abstract

We establish both necessary and sufficient optimality conditions for weak efficiency and firm efficiency by using Hadamard directional derivatives and scalarizing the multiobjective problem under consideration via signed distances. For the first-order conditions, the data of the problem need not even be continuous; for the second-order conditions, we assume only that the first-order derivatives of the data are calm. We include examples showing the advantages of our results over some recent papers in the literature.

Suggested Citation

  • P. Q. Khanh & N. D. Tuan, 2007. "Optimality Conditions for Nonsmooth Multiobjective Optimization Using Hadamard Directional Derivatives," Journal of Optimization Theory and Applications, Springer, vol. 133(3), pages 341-357, June.
  • Handle: RePEc:spr:joptap:v:133:y:2007:i:3:d:10.1007_s10957-007-9169-1
    DOI: 10.1007/s10957-007-9169-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-007-9169-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-007-9169-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. Maeda, 2004. "Second-Order Conditions for Efficiency in Nonsmooth Multiobjective Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 122(3), pages 521-538, September.
    2. P. Q. Khanh & N. D. Tuan, 2006. "First and Second Order Optimality Conditions Using Approximations for Nonsmooth Vector Optimization in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 130(2), pages 289-308, August.
    3. A. Guerraggio & D. T. Luc, 2001. "Optimality Conditions for C1,1 Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 109(3), pages 615-629, June.
    4. Mordukhovich, Boris S., 2005. "Optimization and equilibrium problems with equilibrium constraints," Omega, Elsevier, vol. 33(5), pages 379-384, October.
    5. A. Guerraggio & D.T. Luc, 2003. "Optimality Conditions for C 1,1 Constrained Multiobjective Problems," Journal of Optimization Theory and Applications, Springer, vol. 116(1), pages 117-129, January.
    6. A. Jourani & L. Thibault, 1993. "Approximations and Metric Regularity in Mathematical Programming in Banach Space," Mathematics of Operations Research, INFORMS, vol. 18(2), pages 390-401, May.
    7. J. B. Hiriart-Urruty, 1979. "Tangent Cones, Generalized Gradients and Mathematical Programming in Banach Spaces," Mathematics of Operations Research, INFORMS, vol. 4(1), pages 79-97, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguyen Minh Tung & Nguyen Xuan Duy Bao, 2023. "New Set-Valued Directional Derivatives: Calculus and Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 411-437, May.
    2. Nguyen Minh Tung & Nguyen Xuan Duy Bao, 2022. "Higher-order set-valued Hadamard directional derivatives: calculus rules and sensitivity analysis of equilibrium problems and generalized equations," Journal of Global Optimization, Springer, vol. 83(2), pages 377-402, June.
    3. Luis Rodríguez-Marín & Miguel Sama, 2013. "Scalar Lagrange Multiplier Rules for Set-Valued Problems in Infinite-Dimensional Spaces," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 683-700, March.
    4. Tuan, Nguyen Dinh, 2015. "First and second-order optimality conditions for nonsmooth vector optimization using set-valued directional derivatives," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 300-317.
    5. Ram U. Verma & G. J. Zalmai, 2018. "Parameter-free duality models and applications to semiinfinite minmax fractional programming based on second-order ( $$\phi ,\eta ,\rho ,\theta ,{\tilde{m}}$$ ϕ , η , ρ , θ , m ~ )-sonvexities," OPSEARCH, Springer;Operational Research Society of India, vol. 55(2), pages 381-410, June.
    6. Giorgio Giorgi, 2021. "Some Classical Directional Derivatives and Their Use in Optimization," DEM Working Papers Series 204, University of Pavia, Department of Economics and Management.
    7. P. Q. Khanh & N. M. Tung, 2015. "Second-Order Optimality Conditions with the Envelope-Like Effect for Set-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 68-90, October.
    8. I. Ginchev & A. Guerraggio & M. Rocca, 2009. "Dini Set-Valued Directional Derivative in Locally Lipschitz Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 143(1), pages 87-105, October.
    9. Phan Quoc Khanh & Nguyen Minh Tung, 2016. "Second-Order Conditions for Open-Cone Minimizers and Firm Minimizers in Set-Valued Optimization Subject to Mixed Constraints," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 45-69, October.
    10. Khanh, Phan Quoc & Quyen, Ho Thuc & Yao, Jen-Chih, 2011. "Optimality conditions under relaxed quasiconvexity assumptions using star and adjusted subdifferentials," European Journal of Operational Research, Elsevier, vol. 212(2), pages 235-241, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen Minh Tung & Nguyen Xuan Duy Bao, 2023. "New Set-Valued Directional Derivatives: Calculus and Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 411-437, May.
    2. P. Khanh & L. Tung, 2015. "First- and second-order optimality conditions for multiobjective fractional programming," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 419-440, July.
    3. Ginchev Ivan & Guerraggio Angelo & Rocca Matteo, 2004. "Second-order conditions in C1,1 constrained vector optimization," Economics and Quantitative Methods qf0409, Department of Economics, University of Insubria.
    4. P. Q. Khanh & N. D. Tuan, 2006. "First and Second Order Optimality Conditions Using Approximations for Nonsmooth Vector Optimization in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 130(2), pages 289-308, August.
    5. P. Q. Khanh & L. T. Tung, 2012. "Local Uniqueness of Solutions to Ky Fan Vector Inequalities using Approximations as Derivatives," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 840-854, December.
    6. Marius Durea & Radu Strugariu & Christiane Tammer, 2013. "Scalarization in Geometric and Functional Vector Optimization Revisited," Journal of Optimization Theory and Applications, Springer, vol. 159(3), pages 635-655, December.
    7. Bolte, Jérôme & Le, Tam & Pauwels, Edouard & Silveti-Falls, Antonio, 2022. "Nonsmooth Implicit Differentiation for Machine Learning and Optimization," TSE Working Papers 22-1314, Toulouse School of Economics (TSE).
    8. Khushboo & C. S. Lalitha, 2018. "Scalarizations for a unified vector optimization problem based on order representing and order preserving properties," Journal of Global Optimization, Springer, vol. 70(4), pages 903-916, April.
    9. Ginchev Ivan & Guerraggio Angelo & Rocca Matteo, 2003. "First-Order Conditions for C0,1 Constrained vector optimization," Economics and Quantitative Methods qf0307, Department of Economics, University of Insubria.
    10. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2020. "Robustness Characterizations for Uncertain Optimization Problems via Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 459-479, August.
    11. Huynh Van Ngai & Nguyen Huu Tron & Michel Théra, 2014. "Metric Regularity of the Sum of Multifunctions and Applications," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 355-390, February.
    12. S. K. Zhu & S. J. Li, 2014. "Unified Duality Theory for Constrained Extremum Problems. Part II: Special Duality Schemes," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 763-782, June.
    13. Rocca Matteo & Papalia Melania, 2008. "Well-posedness in vector optimization and scalarization results," Economics and Quantitative Methods qf0807, Department of Economics, University of Insubria.
    14. Tran Su & Dinh Dieu Hang, 2022. "Optimality and duality in nonsmooth multiobjective fractional programming problem with constraints," 4OR, Springer, vol. 20(1), pages 105-137, March.
    15. S. J. Li & Y. D. Xu & S. K. Zhu, 2012. "Nonlinear Separation Approach to Constrained Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 842-856, September.
    16. Giovanni Paolo Crespi & Andreas H. Hamel & Matteo Rocca & Carola Schrage, 2021. "Set Relations via Families of Scalar Functions and Approximate Solutions in Set Optimization," Mathematics of Operations Research, INFORMS, vol. 46(1), pages 361-381, February.
    17. Giorgio Giorgi, 2021. "On Notations for Conic Hulls and Related Considerations on Tangent Cones," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 13(3), pages 1-13, June.
    18. Ning E. & Wen Song & Yu Zhang, 2012. "Second order sufficient optimality conditions in vector optimization," Journal of Global Optimization, Springer, vol. 54(3), pages 537-549, November.
    19. Crespi Giovanni P. & Ginchev Ivan & Rocca Matteo, 2004. "First order optimality conditions in set-valued optimization," Economics and Quantitative Methods qf04010, Department of Economics, University of Insubria.
    20. L. Huerga & B. Jiménez & V. Novo, 2022. "New Notions of Proper Efficiency in Set Optimization with the Set Criterion," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 878-902, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:133:y:2007:i:3:d:10.1007_s10957-007-9169-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.