Minsum Location Extended to Gauges and to Convex Sets
Author
Abstract
Suggested Citation
DOI: 10.1007/s10957-014-0692-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Nguyen Mau Nam & Nguyen Hoang & Nguyen Thai An, 2014. "Constructions of Solutions to Generalized Sylvester and Fermat–Torricelli Problems for Euclidean Balls," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 483-509, February.
- Pey-Chun Chen & Pierre Hansen & Brigitte Jaumard & Hoang Tuy, 1998. "Solution of the Multisource Weber and Conditional Weber Problems by D.-C. Programming," Operations Research, INFORMS, vol. 46(4), pages 548-562, August.
- H. Martini & K.J. Swanepoel & G. Weiss, 2002. "The Fermat–Torricelli Problem in Normed Planes and Spaces," Journal of Optimization Theory and Applications, Springer, vol. 115(2), pages 283-314, November.
- Yaakov S. Kupitz & Horst Martini & Margarita Spirova, 2013. "The Fermat–Torricelli Problem, Part I: A Discrete Gradient-Method Approach," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 305-327, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Simone Görner & Christian Kanzow, 2016. "On Newton’s Method for the Fermat–Weber Location Problem," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 107-118, July.
- Nguyen Mau Nam & R. Blake Rector & Daniel Giles, 2017. "Minimizing Differences of Convex Functions with Applications to Facility Location and Clustering," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 255-278, April.
- Nguyen Thai An & Daniel Giles & Nguyen Mau Nam & R. Blake Rector, 2016. "The Log-Exponential Smoothing Technique and Nesterov’s Accelerated Gradient Method for Generalized Sylvester Problems," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 559-583, February.
- Nguyen Thai An & Nguyen Mau Nam & Xiaolong Qin, 2020. "Solving k-center problems involving sets based on optimization techniques," Journal of Global Optimization, Springer, vol. 76(1), pages 189-209, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Simeon Reich & Truong Minh Tuyen, 2023. "The Generalized Fermat–Torricelli Problem in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 78-97, January.
- Simone Görner & Christian Kanzow, 2016. "On Newton’s Method for the Fermat–Weber Location Problem," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 107-118, July.
- Pawel Kalczynski & Jack Brimberg & Zvi Drezner, 2022. "Less is more: discrete starting solutions in the planar p-median problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 34-59, April.
- João Carlos O. Souza & Paulo Roberto Oliveira & Antoine Soubeyran, 2016. "Global convergence of a proximal linearized algorithm for difference of convex functions," Post-Print hal-01440298, HAL.
- Jack Brimberg & Pierre Hansen & Nenad Mladenović & Eric D. Taillard, 2000. "Improvements and Comparison of Heuristics for Solving the Uncapacitated Multisource Weber Problem," Operations Research, INFORMS, vol. 48(3), pages 444-460, June.
- Amir Beck & Shoham Sabach, 2015. "Weiszfeld’s Method: Old and New Results," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 1-40, January.
- Nguyen Mau Nam & Nguyen Hoang & Nguyen Thai An, 2014. "Constructions of Solutions to Generalized Sylvester and Fermat–Torricelli Problems for Euclidean Balls," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 483-509, February.
- Kaisa Joki & Adil M. Bagirov & Napsu Karmitsa & Marko M. Mäkelä, 2017. "A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes," Journal of Global Optimization, Springer, vol. 68(3), pages 501-535, July.
- Sorin-Mihai Grad & Oleg Wilfer, 2019. "A proximal method for solving nonlinear minmax location problems with perturbed minimal time functions via conjugate duality," Journal of Global Optimization, Springer, vol. 74(1), pages 121-160, May.
- Marta Cavaleiro & Farid Alizadeh, 2021. "A dual simplex-type algorithm for the smallest enclosing ball of balls," Computational Optimization and Applications, Springer, vol. 79(3), pages 767-787, July.
- Drexl, Andreas & Klose, Andreas, 2001. "Facility location models for distribution system design," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 546, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
- Huang, Rongbing & Menezes, Mozart B.C. & Kim, Seokjin, 2012. "The impact of cost uncertainty on the location of a distribution center," European Journal of Operational Research, Elsevier, vol. 218(2), pages 401-407.
- Yaakov S. Kupitz & Horst Martini & Margarita Spirova, 2013. "The Fermat–Torricelli Problem, Part I: A Discrete Gradient-Method Approach," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 305-327, August.
- Prahalad Venkateshan & Kamlesh Mathur, 2015. "A Heuristic for the Multisource Weber Problem with Service Level Constraints," Transportation Science, INFORMS, vol. 49(3), pages 472-483, August.
- F. Mashkoorzadeh & N. Movahedian & S. Nobakhtian, 2022. "The DTC (difference of tangentially convex functions) programming: optimality conditions," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 270-295, July.
- Bonneu, Florent & Thomas-Agnan, Christine, 2009. "Spatial point process models for location-allocation problems," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3070-3081, June.
- Boris Mordukhovich & Nguyen Mau Nam, 2011. "Applications of Variational Analysis to a Generalized Fermat-Torricelli Problem," Journal of Optimization Theory and Applications, Springer, vol. 148(3), pages 431-454, March.
- H. Martini & K. J. Swanepoel & P. Oloff Wet, 2009. "Absorbing Angles, Steiner Minimal Trees, and Antipodality," Journal of Optimization Theory and Applications, Springer, vol. 143(1), pages 149-157, October.
- Klose, Andreas & Drexl, Andreas, 2005. "Facility location models for distribution system design," European Journal of Operational Research, Elsevier, vol. 162(1), pages 4-29, April.
- Schöbel, Anita & Scholz, Daniel, 2014. "A solution algorithm for non-convex mixed integer optimization problems with only few continuous variables," European Journal of Operational Research, Elsevier, vol. 232(2), pages 266-275.
More about this item
Keywords
Duality; Fermat-Torricelli problem; Generalized $$d$$ d -segments; Hahn-Banach Theorem; Minkowski space; Polarity;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:166:y:2015:i:3:d:10.1007_s10957-014-0692-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.