IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v139y2008i3d10.1007_s10957-008-9413-3.html
   My bibliography  Save this article

A Fast MPC Algorithm Using Nonfeasible Active Set Methods

Author

Listed:
  • R. Milman

    (University of Ontario Institute of Technology)

  • E. J. Davison

    (University of Toronto)

Abstract

Model predictive control (MPC) is an optimization-based control framework which is attractive to industry both because it can be practically implemented and it can deal with constraints directly. One of the main drawbacks of MPC is that large MPC horizon times can cause requirements of excessive computational time to solve the quadratic programming (QP) minimization which occurs in the calculation of the controller at each sampling interval. This motivates the study of finding faster ways for computing the QP problem associated with MPC. In this paper, a new nonfeasible active set method is proposed for solving the QP optimization problem that occurs in MPC. This method has the feature that it is typically an order of magnitude faster than traditional methods.

Suggested Citation

  • R. Milman & E. J. Davison, 2008. "A Fast MPC Algorithm Using Nonfeasible Active Set Methods," Journal of Optimization Theory and Applications, Springer, vol. 139(3), pages 591-616, December.
  • Handle: RePEc:spr:joptap:v:139:y:2008:i:3:d:10.1007_s10957-008-9413-3
    DOI: 10.1007/s10957-008-9413-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-008-9413-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-008-9413-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. V. Rao & S. J. Wright & J. B. Rawlings, 1998. "Application of Interior-Point Methods to Model Predictive Control," Journal of Optimization Theory and Applications, Springer, vol. 99(3), pages 723-757, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mu, Yunfei & Xu, Yanze & Zhang, Jiarui & Wu, Zeqing & Jia, Hongjie & Jin, Xiaolong & Qi, Yan, 2023. "A data-driven rolling optimization control approach for building energy systems that integrate virtual energy storage systems," Applied Energy, Elsevier, vol. 346(C).
    2. Nai-Yuan Chiang & Victor M. Zavala, 2016. "An inertia-free filter line-search algorithm for large-scale nonlinear programming," Computational Optimization and Applications, Springer, vol. 64(2), pages 327-354, June.
    3. Daniel P. Robinson, 2015. "Primal-Dual Active-Set Methods for Large-Scale Optimization," Journal of Optimization Theory and Applications, Springer, vol. 166(1), pages 137-171, July.
    4. Daniel Word & Jia Kang & Johan Akesson & Carl Laird, 2014. "Efficient parallel solution of large-scale nonlinear dynamic optimization problems," Computational Optimization and Applications, Springer, vol. 59(3), pages 667-688, December.
    5. Mohsen Davoodi & Hamed Jafari Kaleybar & Morris Brenna & Dario Zaninelli, 2023. "Energy Management Systems for Smart Electric Railway Networks: A Methodological Review," Sustainability, MDPI, vol. 15(16), pages 1-35, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:139:y:2008:i:3:d:10.1007_s10957-008-9413-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.