IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i16p12204-d1213922.html
   My bibliography  Save this article

Energy Management Systems for Smart Electric Railway Networks: A Methodological Review

Author

Listed:
  • Mohsen Davoodi

    (Department of Energy, Politecnico di Milano, 20156 Milan, Italy)

  • Hamed Jafari Kaleybar

    (Department of Energy, Politecnico di Milano, 20156 Milan, Italy)

  • Morris Brenna

    (Department of Energy, Politecnico di Milano, 20156 Milan, Italy)

  • Dario Zaninelli

    (Department of Energy, Politecnico di Milano, 20156 Milan, Italy)

Abstract

Energy shortage is one of the major concerns in today’s world. As a consumer of electrical energy, the electric railway system (ERS), due to trains, stations, and commercial users, intakes an enormous amount of electricity. Increasing greenhouse gases (GHG) and CO 2 emissions, in addition, have drawn the regard of world leaders as among the most dangerous threats at present; based on research in this field, the transportation sector contributes significantly to this pollution. Railway Energy Management Systems (REMS) are a modern green solution that not only tackle these problems but also, by implementing REMS, electricity can be sold to the grid market. Researchers have been trying to reduce the daily operational costs of smart railway stations, mitigating power quality issues, considering the traction uncertainties and stochastic behavior of Renewable Energy Resources (RERs) and Energy Storage Systems (ESSs), which has a significant impact on total operational cost. In this context, the first main objective of this article is to take a comprehensive review of the literature on REMS and examine closely all the works that have been carried out in this area, and also the REMS architecture and configurations are clarified as well. The secondary objective of this article is to analyze both traditional and modern methods utilized in REMS and conduct a thorough comparison of them. In order to provide a comprehensive analysis in this field, over 120 publications have been compiled, listed, and categorized. The study highlights the potential of leveraging RERs for cost reduction and sustainability. Evaluating factors including speed, simplicity, efficiency, accuracy, and ability to handle stochastic behavior and constraints, the strengths and limitations of each optimization method are elucidated.

Suggested Citation

  • Mohsen Davoodi & Hamed Jafari Kaleybar & Morris Brenna & Dario Zaninelli, 2023. "Energy Management Systems for Smart Electric Railway Networks: A Methodological Review," Sustainability, MDPI, vol. 15(16), pages 1-35, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12204-:d:1213922
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/16/12204/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/16/12204/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aleksandra Kuzior & Marek Staszek, 2021. "Energy Management in the Railway Industry: A Case Study of Rail Freight Carrier in Poland," Energies, MDPI, vol. 14(21), pages 1-21, October.
    2. Hoarau, Quentin & Perez, Yannick, 2018. "Interactions between electric mobility and photovoltaic generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 510-522.
    3. Cappers, Peter & Goldman, Charles & Kathan, David, 2010. "Demand response in U.S. electricity markets: Empirical evidence," Energy, Elsevier, vol. 35(4), pages 1526-1535.
    4. Greening, Lorna A., 2010. "Demand response resources: Who is responsible for implementation in a deregulated market?," Energy, Elsevier, vol. 35(4), pages 1518-1525.
    5. Alghoul, M.A. & Hammadi, F.Y. & Amin, Nowshad & Asim, Nilofar, 2018. "The role of existing infrastructure of fuel stations in deploying solar charging systems, electric vehicles and solar energy: A preliminary analysis," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 317-326.
    6. C. V. Rao & S. J. Wright & J. B. Rawlings, 1998. "Application of Interior-Point Methods to Model Predictive Control," Journal of Optimization Theory and Applications, Springer, vol. 99(3), pages 723-757, December.
    7. Calvillo, C.F. & Sánchez-Miralles, A. & Villar, J. & Martín, F., 2017. "Impact of EV penetration in the interconnected urban environment of a smart city," Energy, Elsevier, vol. 141(C), pages 2218-2233.
    8. Faruqui, Ahmad & Malko, J.Robert, 1983. "The residential demand for electricity by time-of-use: A survey of twelve experiments with peak load pricing," Energy, Elsevier, vol. 8(10), pages 781-795.
    9. Chaturvedi, Vaibhav & Kim, Son H., 2015. "Long term energy and emission implications of a global shift to electricity-based public rail transportation system," Energy Policy, Elsevier, vol. 81(C), pages 176-185.
    10. Alagoz, B.B. & Kaygusuz, A. & Karabiber, A., 2012. "A user-mode distributed energy management architecture for smart grid applications," Energy, Elsevier, vol. 44(1), pages 167-177.
    11. Seunghyun Park & Surender Reddy Salkuti, 2019. "Optimal Energy Management of Railroad Electrical Systems with Renewable Energy and Energy Storage Systems," Sustainability, MDPI, vol. 11(22), pages 1-16, November.
    12. Kaelo, P. & Ali, M.M., 2006. "A numerical study of some modified differential evolution algorithms," European Journal of Operational Research, Elsevier, vol. 169(3), pages 1176-1184, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marian Kampik & Marcin Fice & Anna Piaskowy, 2024. "Testing Algorithms for Controlling the Distributed Power Supply System of a Railway Signal Box," Energies, MDPI, vol. 17(17), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Partovi, Farzad & Nikzad, Mehdi & Mozafari, Babak & Ranjbar, Ali Mohamad, 2011. "A stochastic security approach to energy and spinning reserve scheduling considering demand response program," Energy, Elsevier, vol. 36(5), pages 3130-3137.
    2. Eid, Cherrelle & Koliou, Elta & Valles, Mercedes & Reneses, Javier & Hakvoort, Rudi, 2016. "Time-based pricing and electricity demand response: Existing barriers and next steps," Utilities Policy, Elsevier, vol. 40(C), pages 15-25.
    3. Wang, Yong & Li, Lin, 2015. "Time-of-use electricity pricing for industrial customers: A survey of U.S. utilities," Applied Energy, Elsevier, vol. 149(C), pages 89-103.
    4. Jiang, Bo & Farid, Amro M. & Youcef-Toumi, Kamal, 2015. "Demand side management in a day-ahead wholesale market: A comparison of industrial & social welfare approaches," Applied Energy, Elsevier, vol. 156(C), pages 642-654.
    5. Koliou, Elta & Eid, Cherrelle & Chaves-Ávila, José Pablo & Hakvoort, Rudi A., 2014. "Demand response in liberalized electricity markets: Analysis of aggregated load participation in the German balancing mechanism," Energy, Elsevier, vol. 71(C), pages 245-254.
    6. Devenish, Anna, 2023. "Institutional and contextual drivers of and barriers to incentive-based demand response: A comparative case study in the Pacific Northwest," Utilities Policy, Elsevier, vol. 84(C).
    7. Shariatzadeh, Farshid & Mandal, Paras & Srivastava, Anurag K., 2015. "Demand response for sustainable energy systems: A review, application and implementation strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 343-350.
    8. Yousefi, Shaghayegh & Moghaddam, Mohsen Parsa & Majd, Vahid Johari, 2011. "Optimal real time pricing in an agent-based retail market using a comprehensive demand response model," Energy, Elsevier, vol. 36(9), pages 5716-5727.
    9. Heinisch, Verena & Göransson, Lisa & Erlandsson, Rasmus & Hodel, Henrik & Johnsson, Filip & Odenberger, Mikael, 2021. "Smart electric vehicle charging strategies for sectoral coupling in a city energy system," Applied Energy, Elsevier, vol. 288(C).
    10. Chao-Tsung Ma, 2019. "System Planning of Grid-Connected Electric Vehicle Charging Stations and Key Technologies: A Review," Energies, MDPI, vol. 12(21), pages 1-22, November.
    11. He, Yongxiu & Wang, Bing & Wang, Jianhui & Xiong, Wei & Xia, Tian, 2012. "Residential demand response behavior analysis based on Monte Carlo simulation: The case of Yinchuan in China," Energy, Elsevier, vol. 47(1), pages 230-236.
    12. Hong, Seung Ho & Yu, Mengmeng & Huang, Xuefei, 2015. "A real-time demand response algorithm for heterogeneous devices in buildings and homes," Energy, Elsevier, vol. 80(C), pages 123-132.
    13. Dong, Jun & Xue, Guiyuan & Li, Rong, 2016. "Demand response in China: Regulations, pilot projects and recommendations – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 13-27.
    14. Cai, Yanpeng & Applegate, Scott & Yue, Wencong & Cai, Jianying & Wang, Xuan & Liu, Gengyuan & Li, Chunhui, 2017. "A hybrid life cycle and multi-criteria decision analysis approach for identifying sustainable development strategies of Beijing's taxi fleet," Energy Policy, Elsevier, vol. 100(C), pages 314-325.
    15. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    16. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Kendall, Alissa & Træholt, Chresten, 2018. "Optimization of a biomass-integrated renewable energy microgrid with demand side management under uncertainty," Applied Energy, Elsevier, vol. 230(C), pages 836-844.
    17. Reza Fachrizal & Joakim Munkhammar, 2020. "Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles," Energies, MDPI, vol. 13(5), pages 1-19, March.
    18. Liu, Yingqi, 2017. "Demand response and energy efficiency in the capacity resource procurement: Case studies of forward capacity markets in ISO New England, PJM and Great Britain," Energy Policy, Elsevier, vol. 100(C), pages 271-282.
    19. Y, Kiguchi & Y, Heo & M, Weeks & R, Choudhary, 2019. "Predicting intra-day load profiles under time-of-use tariffs using smart meter data," Energy, Elsevier, vol. 173(C), pages 959-970.
    20. Yuan, Xiaohui & Chen, Zhihuan & Yuan, Yanbin & Huang, Yuehua, 2015. "Design of fuzzy sliding mode controller for hydraulic turbine regulating system via input state feedback linearization method," Energy, Elsevier, vol. 93(P1), pages 173-187.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12204-:d:1213922. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.