IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v152y2012i3d10.1007_s10957-011-9915-2.html
   My bibliography  Save this article

New Generalized Second-Order Contingent Epiderivatives and Set-Valued Optimization Problems

Author

Listed:
  • S. J. Li

    (Chongqing University)

  • S. K. Zhu

    (Chongqing University)

  • K. L. Teo

    (Curtin University of Technology)

Abstract

In this paper, we introduce the concept of a generalized second-order composed contingent epiderivative for set-valued maps and discuss its relationship to the generalized second-order contingent epiderivative. We also investigate some of its properties. Then, by virtue of the generalized second-order composed contingent epiderivative, we establish a unified second-order sufficient and necessary optimality condition for set-valued optimization problems, which is a generalization of the corresponding results in the literature.

Suggested Citation

  • S. J. Li & S. K. Zhu & K. L. Teo, 2012. "New Generalized Second-Order Contingent Epiderivatives and Set-Valued Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 587-604, March.
  • Handle: RePEc:spr:joptap:v:152:y:2012:i:3:d:10.1007_s10957-011-9915-2
    DOI: 10.1007/s10957-011-9915-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-011-9915-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-011-9915-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guang Ya Chen & Johannes Jahn, 1998. "Optimality conditions for set-valued optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 48(2), pages 187-200, November.
    2. Johannes Jahn & Rüdiger Rauh, 1997. "Contingent epiderivatives and set-valued optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 46(2), pages 193-211, June.
    3. J. Jahn & A. A. Khan & P. Zeilinger, 2005. "Second-Order Optimality Conditions in Set Optimization," Journal of Optimization Theory and Applications, Springer, vol. 125(2), pages 331-347, May.
    4. Giancarlo Bigi, 2006. "On sufficient second order optimality conditions in multiobjective optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(1), pages 77-85, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi-Hong Xu & Zhen-Hua Peng, 2018. "Second-Order M-Composed Tangent Derivative and Its Applications," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(05), pages 1-20, October.
    2. S. Zhu & S. Li & K. Teo, 2014. "Second-order Karush–Kuhn–Tucker optimality conditions for set-valued optimization," Journal of Global Optimization, Springer, vol. 58(4), pages 673-692, April.
    3. Xiang-Kai Sun & Sheng-Jie Li, 2014. "Generalized second-order contingent epiderivatives in parametric vector optimization problems," Journal of Global Optimization, Springer, vol. 58(2), pages 351-363, February.
    4. Zhenhua Peng & Yihong Xu, 2017. "New Second-Order Tangent Epiderivatives and Applications to Set-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 172(1), pages 128-140, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. Q. Khanh & N. D. Tuan, 2008. "Higher-Order Variational Sets and Higher-Order Optimality Conditions for Proper Efficiency in Set-Valued Nonsmooth Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 243-261, November.
    2. Xiang-Kai Sun & Sheng-Jie Li, 2014. "Generalized second-order contingent epiderivatives in parametric vector optimization problems," Journal of Global Optimization, Springer, vol. 58(2), pages 351-363, February.
    3. Nguyen Anh & Phan Khanh, 2013. "Higher-order optimality conditions in set-valued optimization using radial sets and radial derivatives," Journal of Global Optimization, Springer, vol. 56(2), pages 519-536, June.
    4. Liu He & Qi-Lin Wang & Ching-Feng Wen & Xiao-Yan Zhang & Xiao-Bing Li, 2019. "A Kind of New Higher-Order Mond-Weir Type Duality for Set-Valued Optimization Problems," Mathematics, MDPI, vol. 7(4), pages 1-18, April.
    5. S. Zhu & S. Li & K. Teo, 2014. "Second-order Karush–Kuhn–Tucker optimality conditions for set-valued optimization," Journal of Global Optimization, Springer, vol. 58(4), pages 673-692, April.
    6. P. Q. Khanh & N. D. Tuan, 2008. "Variational Sets of Multivalued Mappings and a Unified Study of Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 139(1), pages 47-65, October.
    7. Nguyen Thi Toan & Le Quang Thuy, 2023. "S-Derivative of the Extremum Multifunction to a Multi-objective Parametric Discrete Optimal Control Problem," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 240-265, January.
    8. Elvira Hernández & Luis Rodríguez-Marín, 2011. "Weak and Strong Subgradients of Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 149(2), pages 352-365, May.
    9. Nguyen Hoang Anh & Phan Khanh, 2014. "Higher-order optimality conditions for proper efficiency in nonsmooth vector optimization using radial sets and radial derivatives," Journal of Global Optimization, Springer, vol. 58(4), pages 693-709, April.
    10. Koushik Das & Savin Treanţă & Tareq Saeed, 2022. "Mond-Weir and Wolfe Duality of Set-Valued Fractional Minimax Problems in Terms of Contingent Epi-Derivative of Second-Order," Mathematics, MDPI, vol. 10(6), pages 1-21, March.
    11. T. D. Chuong & J. C. Yao, 2010. "Generalized Clarke Epiderivatives of Parametric Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 146(1), pages 77-94, July.
    12. N. L. H. Anh & P. Q. Khanh, 2013. "Variational Sets of Perturbation Maps and Applications to Sensitivity Analysis for Constrained Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 363-384, August.
    13. J. Baier & J. Jahn, 1999. "On Subdifferentials of Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 100(1), pages 233-240, January.
    14. S. J. Li & S. K. Zhu & X. B. Li, 2012. "Second-Order Optimality Conditions for Strict Efficiency of Constrained Set-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 534-557, November.
    15. P. Q. Khanh & N. M. Tung, 2015. "Second-Order Optimality Conditions with the Envelope-Like Effect for Set-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 68-90, October.
    16. J. Y. Bello Cruz & G. Bouza Allende, 2014. "A Steepest Descent-Like Method for Variable Order Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 371-391, August.
    17. Davide LA TORRE, 2004. "Characterizations of convex vector functions and optimization by mollified derivatives," Departmental Working Papers 2004-09, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    18. J. Jahn & A. A. Khan & P. Zeilinger, 2005. "Second-Order Optimality Conditions in Set Optimization," Journal of Optimization Theory and Applications, Springer, vol. 125(2), pages 331-347, May.
    19. Phan Quoc Khanh & Nguyen Minh Tung, 2016. "Second-Order Conditions for Open-Cone Minimizers and Firm Minimizers in Set-Valued Optimization Subject to Mixed Constraints," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 45-69, October.
    20. X. L. Guo & S. J. Li, 2014. "Optimality Conditions for Vector Optimization Problems with Difference of Convex Maps," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 821-844, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:152:y:2012:i:3:d:10.1007_s10957-011-9915-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.