IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v137y2008i3d10.1007_s10957-007-9345-3.html
   My bibliography  Save this article

Higher-Order Optimality Conditions for Set-Valued Optimization

Author

Listed:
  • S. J. Li

    (Chongqing University)

  • K. L. Teo

    (Curtin University of Technology)

  • X. Q. Yang

    (Hong Kong Polytechnic University)

Abstract

This paper deals with higher-order optimality conditions of set-valued optimization problems. By virtue of the higher-order derivatives introduced in (Aubin and Frankowska, Set-Valued Analysis, Birkhäuser, Boston, [1990]) higher-order necessary and sufficient optimality conditions are obtained for a set-valued optimization problem whose constraint condition is determined by a fixed set. Higher-order Fritz John type necessary and sufficient optimality conditions are also obtained for a set-valued optimization problem whose constraint condition is determined by a set-valued map.

Suggested Citation

  • S. J. Li & K. L. Teo & X. Q. Yang, 2008. "Higher-Order Optimality Conditions for Set-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 137(3), pages 533-553, June.
  • Handle: RePEc:spr:joptap:v:137:y:2008:i:3:d:10.1007_s10957-007-9345-3
    DOI: 10.1007/s10957-007-9345-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-007-9345-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-007-9345-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B. Aghezzaf & M. Hachimi, 1999. "Second-Order Optimality Conditions in Multiobjective Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 102(1), pages 37-50, July.
    2. J. Jahn & A. A. Khan & P. Zeilinger, 2005. "Second-Order Optimality Conditions in Set Optimization," Journal of Optimization Theory and Applications, Springer, vol. 125(2), pages 331-347, May.
    3. Giancarlo Bigi & Marco Castellani, 2002. "K-epiderivatives for set-valued functions and optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 55(3), pages 401-412, June.
    4. Giancarlo Bigi & Marco Castellani, 2002. "K-epiderivatives for set-valued functions and optimization," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 55(3), pages 401-412, June.
    5. Bienvenido Jiménez & Vicente Novo, 2003. "Second order necessary conditions in set constrained differentiable vector optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 58(2), pages 299-317, November.
    6. Giovanni Crespi & Ivan Ginchev & Matteo Rocca, 2006. "First-order optimality conditions in set-valued optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(1), pages 87-106, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguyen Hoang Anh & Phan Khanh, 2014. "Higher-order optimality conditions for proper efficiency in nonsmooth vector optimization using radial sets and radial derivatives," Journal of Global Optimization, Springer, vol. 58(4), pages 693-709, April.
    2. Nguyen Xuan Duy Bao & Phan Quoc Khanh & Nguyen Minh Tung, 2022. "Quasi-contingent derivatives and studies of higher-orders in nonsmooth optimization," Journal of Global Optimization, Springer, vol. 84(1), pages 205-228, September.
    3. Zhenhua Peng & Yihong Xu, 2017. "New Second-Order Tangent Epiderivatives and Applications to Set-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 172(1), pages 128-140, January.
    4. S. Zhu & S. Li & K. Teo, 2014. "Second-order Karush–Kuhn–Tucker optimality conditions for set-valued optimization," Journal of Global Optimization, Springer, vol. 58(4), pages 673-692, April.
    5. Yi-Hong Xu & Zhen-Hua Peng, 2018. "Second-Order M-Composed Tangent Derivative and Its Applications," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(05), pages 1-20, October.
    6. N. L. H. Anh & P. Q. Khanh, 2013. "Variational Sets of Perturbation Maps and Applications to Sensitivity Analysis for Constrained Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 363-384, August.
    7. M. H. Li & S. J. Li, 2010. "Second-Order Differential and Sensitivity Properties of Weak Vector Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 144(1), pages 76-87, January.
    8. Koushik Das & Savin Treanţă & Tareq Saeed, 2022. "Mond-Weir and Wolfe Duality of Set-Valued Fractional Minimax Problems in Terms of Contingent Epi-Derivative of Second-Order," Mathematics, MDPI, vol. 10(6), pages 1-21, March.
    9. Nguyen Minh Tung, 2020. "New Higher-Order Strong Karush–Kuhn–Tucker Conditions for Proper Solutions in Nonsmooth Optimization," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 448-475, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. Q. Khanh & N. D. Tuan, 2008. "Higher-Order Variational Sets and Higher-Order Optimality Conditions for Proper Efficiency in Set-Valued Nonsmooth Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 243-261, November.
    2. Yi-Hong Xu & Zhen-Hua Peng, 2018. "Second-Order M-Composed Tangent Derivative and Its Applications," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(05), pages 1-20, October.
    3. Zhenhua Peng & Yihong Xu, 2017. "New Second-Order Tangent Epiderivatives and Applications to Set-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 172(1), pages 128-140, January.
    4. P. Q. Khanh & N. D. Tuan, 2008. "Variational Sets of Multivalued Mappings and a Unified Study of Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 139(1), pages 47-65, October.
    5. María C. Maciel & Sandra A. Santos & Graciela N. Sottosanto, 2011. "On Second-Order Optimality Conditions for Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 149(2), pages 332-351, May.
    6. Giorgio Giorgi, 2019. "Notes on Constraint Qualifications for Second-Order Optimality Conditions," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 11(5), pages 16-32, October.
    7. Giorgio, 2019. "On Second-Order Optimality Conditions in Smooth Nonlinear Programming Problems," DEM Working Papers Series 171, University of Pavia, Department of Economics and Management.
    8. N. L. H. Anh & P. Q. Khanh, 2013. "Variational Sets of Perturbation Maps and Applications to Sensitivity Analysis for Constrained Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 363-384, August.
    9. Giovanni Crespi & Ivan Ginchev & Matteo Rocca, 2006. "First-order optimality conditions in set-valued optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(1), pages 87-106, February.
    10. C. Gutiérrez & B. Jiménez & V. Novo, 2009. "New Second-Order Directional Derivative and Optimality Conditions in Scalar and Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 142(1), pages 85-106, July.
    11. Crespi Giovanni P. & Ginchev Ivan & Rocca Matteo, 2004. "First order optimality conditions in set-valued optimization," Economics and Quantitative Methods qf04010, Department of Economics, University of Insubria.
    12. Crespi Giovanni P. & Ginchev Ivan & Rocca Matteo, 2004. "First order optimality condition for constrained set-valued optimization," Economics and Quantitative Methods qf04014, Department of Economics, University of Insubria.
    13. Zhenhua Peng & Zhongping Wan, 2020. "Second-Order Composed Contingent Derivative of the Perturbation Map in Multiobjective Optimization," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 37(02), pages 1-23, March.
    14. Do Van Luu, 2018. "Second-order necessary efficiency conditions for nonsmooth vector equilibrium problems," Journal of Global Optimization, Springer, vol. 70(2), pages 437-453, February.
    15. S. J. Li & S. K. Zhu & X. B. Li, 2012. "Second-Order Optimality Conditions for Strict Efficiency of Constrained Set-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 534-557, November.
    16. P. Q. Khanh & N. M. Tung, 2015. "Second-Order Optimality Conditions with the Envelope-Like Effect for Set-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 68-90, October.
    17. S. Zhu & S. Li & K. Teo, 2014. "Second-order Karush–Kuhn–Tucker optimality conditions for set-valued optimization," Journal of Global Optimization, Springer, vol. 58(4), pages 673-692, April.
    18. Khushboo & C. S. Lalitha, 2018. "Scalarizations for a unified vector optimization problem based on order representing and order preserving properties," Journal of Global Optimization, Springer, vol. 70(4), pages 903-916, April.
    19. Bienvenido Jiménez & Vicente Novo, 2008. "Higher-order optimality conditions for strict local minima," Annals of Operations Research, Springer, vol. 157(1), pages 183-192, January.
    20. Tuan, Nguyen Dinh, 2015. "First and second-order optimality conditions for nonsmooth vector optimization using set-valued directional derivatives," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 300-317.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:137:y:2008:i:3:d:10.1007_s10957-007-9345-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.