IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v145y2010i1d10.1007_s10957-009-9616-2.html
   My bibliography  Save this article

Global Optimality Conditions for Some Classes of Optimization Problems

Author

Listed:
  • Z. Y. Wu

    (University of Ballarat)

  • A. M. Rubinov

    (University of Ballarat)

Abstract

We establish new necessary and sufficient optimality conditions for global optimization problems. In particular, we establish tractable optimality conditions for the problems of minimizing a weakly convex or concave function subject to standard constraints, such as box constraints, binary constraints, and simplex constraints. We also derive some new necessary and sufficient optimality conditions for quadratic optimization. Our main theoretical tool for establishing these optimality conditions is abstract convexity.

Suggested Citation

  • Z. Y. Wu & A. M. Rubinov, 2010. "Global Optimality Conditions for Some Classes of Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 145(1), pages 164-185, April.
  • Handle: RePEc:spr:joptap:v:145:y:2010:i:1:d:10.1007_s10957-009-9616-2
    DOI: 10.1007/s10957-009-9616-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-009-9616-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-009-9616-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Z. Y. Wu & V. Jeyakumar & A. M. Rubinov, 2007. "Sufficient Conditions for Global Optimality of Bivalent Nonconvex Quadratic Programs with Inequality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 133(1), pages 123-130, April.
    2. Vaithilingam Jeyakumar & Zhiyou Wu, 2007. "Conditions For Global Optimality Of Quadratic Minimization Problems With Lmi Constraints," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 24(02), pages 149-160.
    3. M. Ç. Pinar, 2004. "Sufficient Global Optimality Conditions for Bivalent Quadratic Optimization," Journal of Optimization Theory and Applications, Springer, vol. 122(2), pages 433-440, August.
    4. Jean-Philippe Vial, 1983. "Strong and Weak Convexity of Sets and Functions," Mathematics of Operations Research, INFORMS, vol. 8(2), pages 231-259, May.
    5. V. Jeyakumar & A. M. Rubinov & Z. Y. Wu, 2007. "Generalized Fenchel’s Conjugation Formulas and Duality for Abstract Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 132(3), pages 441-458, March.
    6. VIAL, Jean-Philippe, 1983. "Strong and weak convexity of sets and functions," LIDAM Reprints CORE 529, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guoyin Li, 2012. "Global Quadratic Minimization over Bivalent Constraints: Necessary and Sufficient Global Optimality Condition," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 710-726, March.
    2. Xue-Gang Zhou & Xiao-Peng Yang & Bing-Yuan Cao, 2015. "Global optimality conditions for cubic minimization problems with cubic constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(3), pages 243-264, December.
    3. Amar Andjouh & Mohand Ouamer Bibi, 2022. "Adaptive Global Algorithm for Solving Box-Constrained Non-convex Quadratic Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 360-378, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue-Gang Zhou & Xiao-Peng Yang & Bing-Yuan Cao, 2015. "Global optimality conditions for cubic minimization problems with cubic constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(3), pages 243-264, December.
    2. Wu, Zhiyou & Tian, Jing & Quan, Jing & Ugon, Julien, 2014. "Optimality conditions and optimization methods for quartic polynomial optimization," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 968-982.
    3. Maćkowiak, Piotr, 2009. "Adaptive Rolling Plans Are Good," MPRA Paper 42043, University Library of Munich, Germany.
    4. Sorger, Gerhard, 2004. "Consistent planning under quasi-geometric discounting," Journal of Economic Theory, Elsevier, vol. 118(1), pages 118-129, September.
    5. Shuvomoy Das Gupta & Bartolomeo Stellato & Bart P. G. Parys, 2024. "Exterior-Point Optimization for Sparse and Low-Rank Optimization," Journal of Optimization Theory and Applications, Springer, vol. 202(2), pages 795-833, August.
    6. Sorin-Mihai Grad & Felipe Lara, 2022. "An extension of the proximal point algorithm beyond convexity," Journal of Global Optimization, Springer, vol. 82(2), pages 313-329, February.
    7. Huynh Ngai & Nguyen Huu Tron & Nguyen Vu & Michel Théra, 2022. "Variational Analysis of Paraconvex Multifunctions," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 180-218, June.
    8. J. X. Cruz Neto & P. R. Oliveira & A. Soubeyran & J. C. O. Souza, 2020. "A generalized proximal linearized algorithm for DC functions with application to the optimal size of the firm problem," Annals of Operations Research, Springer, vol. 289(2), pages 313-339, June.
    9. Thai Doan Chuong, 2020. "Semidefinite Program Duals for Separable Polynomial Programs Involving Box Constraints," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 289-299, April.
    10. Altannar Chinchuluun & Panos Pardalos, 2007. "A survey of recent developments in multiobjective optimization," Annals of Operations Research, Springer, vol. 154(1), pages 29-50, October.
    11. Meena K. Bector & I. Husain & S. Chandra & C. R. Bector, 1988. "A duality model for a generalized minmax program," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(5), pages 493-501, October.
    12. Gary Kochenberger & Jin-Kao Hao & Fred Glover & Mark Lewis & Zhipeng Lü & Haibo Wang & Yang Wang, 2014. "The unconstrained binary quadratic programming problem: a survey," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 58-81, July.
    13. T. R. Gulati & I. Ahmad & D. Agarwal, 2007. "Sufficiency and Duality in Multiobjective Programming under Generalized Type I Functions," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 411-427, December.
    14. Venditti Alain, 2019. "Competitive equilibrium cycles for small discounting in discrete-time two-sector optimal growth models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 23(4), pages 1-14, September.
    15. Florent Nacry & Vo Anh Thuong Nguyen & Juliette Venel, 2024. "Metric Subregularity and $$\omega (\cdot )$$ ω ( · ) -Normal Regularity Properties," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1439-1470, November.
    16. D. H. Yuan & X. L. Liu & A. Chinchuluun & P. M. Pardalos, 2006. "Nondifferentiable Minimax Fractional Programming Problems with (C, α, ρ, d)-Convexity," Journal of Optimization Theory and Applications, Springer, vol. 129(1), pages 185-199, April.
    17. A. Iusem & F. Lara, 2022. "Proximal Point Algorithms for Quasiconvex Pseudomonotone Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 443-461, June.
    18. S. Nobakhtian, 2006. "Sufficiency in Nonsmooth Multiobjective Programming Involving Generalized (Fρ)-convexity," Journal of Optimization Theory and Applications, Springer, vol. 130(2), pages 361-367, August.
    19. Alain Venditti, 2012. "Weak concavity properties of indirect utility functions in multisector optimal growth models," International Journal of Economic Theory, The International Society for Economic Theory, vol. 8(1), pages 13-26, March.
    20. Tadeusz Antczak, 2021. "A new approximation approach to optimality and duality for a class of nonconvex differentiable vector optimization problems," Computational Management Science, Springer, vol. 18(1), pages 49-71, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:145:y:2010:i:1:d:10.1007_s10957-009-9616-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.