Finding the Maximum Eigenvalue of Essentially Nonnegative Symmetric Tensors via Sum of Squares Programming
Author
Abstract
Suggested Citation
DOI: 10.1007/s10957-013-0293-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Guoyin Li, 2012. "Global Quadratic Minimization over Bivalent Constraints: Necessary and Sufficient Global Optimality Condition," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 710-726, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chen, Haibin & Li, Guoyin & Qi, Liqun, 2016. "Further results on Cauchy tensors and Hankel tensors," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 50-62.
- Na Zhao & Qingzhi Yang & Yajun Liu, 2017. "Computing the generalized eigenvalues of weakly symmetric tensors," Computational Optimization and Applications, Springer, vol. 66(2), pages 285-307, March.
- Shenglong Hu & Guoyin Li & Liqun Qi, 2016. "A Tensor Analogy of Yuan’s Theorem of the Alternative and Polynomial Optimization with Sign structure," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 446-474, February.
- Gaohang Yu & Zefeng Yu & Yi Xu & Yisheng Song & Yi Zhou, 2016. "An adaptive gradient method for computing generalized tensor eigenpairs," Computational Optimization and Applications, Springer, vol. 65(3), pages 781-797, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gary Kochenberger & Jin-Kao Hao & Fred Glover & Mark Lewis & Zhipeng Lü & Haibo Wang & Yang Wang, 2014. "The unconstrained binary quadratic programming problem: a survey," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 58-81, July.
- Xue-Gang Zhou & Xiao-Peng Yang & Bing-Yuan Cao, 2015. "Global optimality conditions for cubic minimization problems with cubic constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(3), pages 243-264, December.
- V. Jeyakumar & G. Li & S. Srisatkunarajah, 2014. "Global optimality principles for polynomial optimization over box or bivalent constraints by separable polynomial approximations," Journal of Global Optimization, Springer, vol. 58(1), pages 31-50, January.
More about this item
Keywords
Symmetric tensors; Maximum eigenvalue; Sum of squares of polynomials; Semi-definite programming problem;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:158:y:2013:i:3:d:10.1007_s10957-013-0293-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.