IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v122y2004i2d10.1023_bjota.0000042530.24671.80.html
   My bibliography  Save this article

Sufficient Global Optimality Conditions for Bivalent Quadratic Optimization

Author

Listed:
  • M. Ç. Pinar

    (Bilkent University)

Abstract

We prove a sufficient global optimality condition for the problem of minimizing a quadratic function subject to quadratic equality constraints where the variables are allowed to take values −1 and 1. We extend the condition to quadratic problems with matrix variables and orthonormality constraints, and in particular to the quadratic assignment problem.

Suggested Citation

  • M. Ç. Pinar, 2004. "Sufficient Global Optimality Conditions for Bivalent Quadratic Optimization," Journal of Optimization Theory and Applications, Springer, vol. 122(2), pages 433-440, August.
  • Handle: RePEc:spr:joptap:v:122:y:2004:i:2:d:10.1023_b:jota.0000042530.24671.80
    DOI: 10.1023/B:JOTA.0000042530.24671.80
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/B:JOTA.0000042530.24671.80
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/B:JOTA.0000042530.24671.80?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Z. Y. Wu & V. Jeyakumar & A. M. Rubinov, 2007. "Sufficient Conditions for Global Optimality of Bivalent Nonconvex Quadratic Programs with Inequality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 133(1), pages 123-130, April.
    2. Guoyin Li, 2012. "Global Quadratic Minimization over Bivalent Constraints: Necessary and Sufficient Global Optimality Condition," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 710-726, March.
    3. Gary Kochenberger & Jin-Kao Hao & Fred Glover & Mark Lewis & Zhipeng Lü & Haibo Wang & Yang Wang, 2014. "The unconstrained binary quadratic programming problem: a survey," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 58-81, July.
    4. Xue-Gang Zhou & Xiao-Peng Yang & Bing-Yuan Cao, 2015. "Global optimality conditions for cubic minimization problems with cubic constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(3), pages 243-264, December.
    5. Z. Y. Wu & Y. J. Yang & F. S. Bai & M. Mammadov, 2011. "Global Optimality Conditions and Optimization Methods for Quadratic Knapsack Problems," Journal of Optimization Theory and Applications, Springer, vol. 151(2), pages 241-259, November.
    6. V. Jeyakumar & G. Li & S. Srisatkunarajah, 2014. "Global optimality principles for polynomial optimization over box or bivalent constraints by separable polynomial approximations," Journal of Global Optimization, Springer, vol. 58(1), pages 31-50, January.
    7. Thai Doan Chuong, 2020. "Semidefinite Program Duals for Separable Polynomial Programs Involving Box Constraints," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 289-299, April.
    8. X. Zheng & X. Sun & D. Li & Y. Xu, 2012. "On zero duality gap in nonconvex quadratic programming problems," Journal of Global Optimization, Springer, vol. 52(2), pages 229-242, February.
    9. Hossein Mohebi & Alexander Rubinov, 2006. "Metric Projection onto a Closed Set: Necessary and Sufficient Conditions for the Global Minimum," Mathematics of Operations Research, INFORMS, vol. 31(1), pages 124-132, February.
    10. Z. Y. Wu & A. M. Rubinov, 2010. "Global Optimality Conditions for Some Classes of Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 145(1), pages 164-185, April.
    11. Wu, Zhiyou & Tian, Jing & Quan, Jing & Ugon, Julien, 2014. "Optimality conditions and optimization methods for quartic polynomial optimization," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 968-982.
    12. Amar Andjouh & Mohand Ouamer Bibi, 2022. "Adaptive Global Algorithm for Solving Box-Constrained Non-convex Quadratic Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 360-378, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:122:y:2004:i:2:d:10.1023_b:jota.0000042530.24671.80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.