IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v141y2009i1d10.1007_s10957-008-9501-4.html
   My bibliography  Save this article

Hybrid Steepest Descent Methods for Zeros of Nonlinear Operators with Applications to Variational Inequalities

Author

Listed:
  • L. C. Zeng

    (Shanghai Normal University)

  • S. Schaible

    (Chung Yuan Christian University)

  • J. C. Yao

    (National Sun Yat-Sen University)

Abstract

In this paper, the hybrid steepest descent methods are extended to develop new iterative schemes for finding the zeros of bounded, demicontinuous and φ-strongly accretive mappings in uniformly smooth Banach spaces. Two iterative schemes are proposed. Strong convergence results are established and applications to variational inequalities are given.

Suggested Citation

  • L. C. Zeng & S. Schaible & J. C. Yao, 2009. "Hybrid Steepest Descent Methods for Zeros of Nonlinear Operators with Applications to Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 141(1), pages 75-91, April.
  • Handle: RePEc:spr:joptap:v:141:y:2009:i:1:d:10.1007_s10957-008-9501-4
    DOI: 10.1007/s10957-008-9501-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-008-9501-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-008-9501-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patrick Jaillet & Damien Lamberton & Bernard Lapeyre, 1990. "Variational inequalities and the pricing of American options," Post-Print hal-01667008, HAL.
    2. H. K. Xu & T. H. Kim, 2003. "Convergence of Hybrid Steepest-Descent Methods for Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 119(1), pages 185-201, October.
    3. Jen-Chih Yao, 1994. "Variational Inequalities with Generalized Monotone Operators," Mathematics of Operations Research, INFORMS, vol. 19(3), pages 691-705, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L. C. Zeng & N. C. Wong & J. C. Yao, 2007. "Convergence Analysis of Modified Hybrid Steepest-Descent Methods with Variable Parameters for Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 132(1), pages 51-69, January.
    2. Lu-Chuan Ceng & Qamrul Hasan Ansari & Jen-Chih Yao, 2011. "Iterative Methods for Triple Hierarchical Variational Inequalities in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 151(3), pages 489-512, December.
    3. Min Dai & Yue Kuen Kwok, 2006. "Characterization Of Optimal Stopping Regions Of American Asian And Lookback Options," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 63-82, January.
    4. Kanikar Muangchoo & Poom Kumam & Yeol Je Cho & Sompong Dhompongsa & Sakulbuth Ekvittayaniphon, 2019. "Approximating Fixed Points of Bregman Generalized α -Nonexpansive Mappings," Mathematics, MDPI, vol. 7(8), pages 1-28, August.
    5. Ciarcià, Carla & Daniele, Patrizia, 2016. "New existence theorems for quasi-variational inequalities and applications to financial models," European Journal of Operational Research, Elsevier, vol. 251(1), pages 288-299.
    6. Hao Zhou & Duy-Minh Dang, 2024. "Numerical analysis of American option pricing in a two-asset jump-diffusion model," Papers 2410.04745, arXiv.org, revised Oct 2024.
    7. Mostafa Ghadampour & Ebrahim Soori & Ravi P. Agarwal & Donal O’Regan, 2022. "A Strong Convergence Theorem for Solving an Equilibrium Problem and a Fixed Point Problem Using the Bregman Distance," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 854-877, December.
    8. Rafael Company & Vera Egorova & Lucas J'odar & Fazlollah Soleymani, 2017. "Computing stable numerical solutions for multidimensional American option pricing problems: a semi-discretization approach," Papers 1701.08545, arXiv.org.
    9. Zakaria Marah, 2023. "American Exchange option driven by a L\'evy process," Papers 2307.10900, arXiv.org.
    10. Ken-ichi Mitsui & Yoshio Tabata, 2005. "Wavelet based Multi-grid analysis, Wavelet Galerkin method and their Applications to American option: A Survey," Discussion Papers in Economics and Business 05-26, Osaka University, Graduate School of Economics.
    11. L. C. Zeng & J. C. Yao, 2007. "Existence Theorems for Variational Inequalities in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 132(2), pages 321-337, February.
    12. Pressacco, Flavio & Gaudenzi, Marcellino & Zanette, Antonino & Ziani, Laura, 2008. "New insights on testing the efficiency of methods of pricing and hedging American options," European Journal of Operational Research, Elsevier, vol. 185(1), pages 235-254, February.
    13. Yonghong Yao & Yeong-Cheng Liou & Shin Kang, 2013. "Two-step projection methods for a system of variational inequality problems in Banach spaces," Journal of Global Optimization, Springer, vol. 55(4), pages 801-811, April.
    14. Jean-Paul Décamps & Thomas Mariotti & Stéphane Villeneuve, 2006. "Irreversible investment in alternative projects," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 28(2), pages 425-448, June.
    15. Cheng Cai & Tiziano De Angelis & Jan Palczewski, 2021. "The American put with finite-time maturity and stochastic interest rate," Papers 2104.08502, arXiv.org, revised Feb 2024.
    16. Battauz, A. & Pratelli, M., 2004. "Optimal stopping and American options with discrete dividends and exogenous risk," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 255-265, October.
    17. L. C. Ceng & S. Schaible & J. C. Yao, 2008. "Implicit Iteration Scheme with Perturbed Mapping for Equilibrium Problems and Fixed Point Problems of Finitely Many Nonexpansive Mappings," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 403-418, November.
    18. Zhongdi Cen & Anbo Le & Aimin Xu, 2012. "A Second-Order Difference Scheme for the Penalized Black–Scholes Equation Governing American Put Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 40(1), pages 49-62, June.
    19. Erhan Bayraktar & Hao Xing, 2009. "Pricing American options for jump diffusions by iterating optimal stopping problems for diffusions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(3), pages 505-525, December.
    20. Darae Jeong & Minhyun Yoo & Changwoo Yoo & Junseok Kim, 2019. "A Hybrid Monte Carlo and Finite Difference Method for Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 111-124, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:141:y:2009:i:1:d:10.1007_s10957-008-9501-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.