On Mann Viscosity Subgradient Extragradient Algorithms for Fixed Point Problems of Finitely Many Strict Pseudocontractions and Variational Inequalities
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- H. K. Xu & T. H. Kim, 2003. "Convergence of Hybrid Steepest-Descent Methods for Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 119(1), pages 185-201, October.
- Rapeepan Kraikaew & Satit Saejung, 2014. "Strong Convergence of the Halpern Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 399-412, November.
- Zhao-Rong Kong & Lu-Chuan Ceng & Ching-Feng Wen, 2012. "Some Modified Extragradient Methods for Solving Split Feasibility and Fixed Point Problems," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-32, December.
- Lu-Chuan Ceng & Qing Yuan, 2019. "Hybrid Mann Viscosity Implicit Iteration Methods for Triple Hierarchical Variational Inequalities, Systems of Variational Inequalities and Fixed Point Problems," Mathematics, MDPI, vol. 7(2), pages 1-24, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lu-Chuan Ceng & Adrian Petruşel & Ching-Feng Wen & Jen-Chih Yao, 2019. "Inertial-Like Subgradient Extragradient Methods for Variational Inequalities and Fixed Points of Asymptotically Nonexpansive and Strictly Pseudocontractive Mappings," Mathematics, MDPI, vol. 7(9), pages 1-19, September.
- Lu-Chuan Ceng & Yekini Shehu & Jen-Chih Yao, 2022. "Modified Mann Subgradient-like Extragradient Rules for Variational Inequalities and Common Fixed Points Involving Asymptotically Nonexpansive Mappings," Mathematics, MDPI, vol. 10(5), pages 1-20, February.
- Yun-Ling Cui & Lu-Chuan Ceng & Fang-Fei Zhang & Cong-Shan Wang & Jian-Ye Li & Hui-Ying Hu & Long He, 2022. "Modified Mann-Type Subgradient Extragradient Rules for Variational Inequalities and Common Fixed Points Implicating Countably Many Nonexpansive Operators," Mathematics, MDPI, vol. 10(11), pages 1-26, June.
- Lu-Chuan Ceng & Xiaoye Yang, 2019. "Some Mann-Type Implicit Iteration Methods for Triple Hierarchical Variational Inequalities, Systems Variational Inequalities and Fixed Point Problems," Mathematics, MDPI, vol. 7(3), pages 1-20, February.
- Lu-Chuan Ceng & Xiaolong Qin & Yekini Shehu & Jen-Chih Yao, 2019. "Mildly Inertial Subgradient Extragradient Method for Variational Inequalities Involving an Asymptotically Nonexpansive and Finitely Many Nonexpansive Mappings," Mathematics, MDPI, vol. 7(10), pages 1-19, September.
- Lu-Chuan Ceng & Ching-Feng Wen & Yeong-Cheng Liou & Jen-Chih Yao, 2022. "On Strengthened Inertial-Type Subgradient Extragradient Rule with Adaptive Step Sizes for Variational Inequalities and Fixed Points of Asymptotically Nonexpansive Mappings," Mathematics, MDPI, vol. 10(6), pages 1-21, March.
- Jamilu Abubakar & Poom Kumam & Habib ur Rehman & Abdulkarim Hassan Ibrahim, 2020. "Inertial Iterative Schemes with Variable Step Sizes for Variational Inequality Problem Involving Pseudomonotone Operator," Mathematics, MDPI, vol. 8(4), pages 1-25, April.
- Kanikar Muangchoo & Poom Kumam & Yeol Je Cho & Sompong Dhompongsa & Sakulbuth Ekvittayaniphon, 2019. "Approximating Fixed Points of Bregman Generalized α -Nonexpansive Mappings," Mathematics, MDPI, vol. 7(8), pages 1-28, August.
- Pawicha Phairatchatniyom & Poom Kumam & Yeol Je Cho & Wachirapong Jirakitpuwapat & Kanokwan Sitthithakerngkiet, 2019. "The Modified Inertial Iterative Algorithm for Solving Split Variational Inclusion Problem for Multi-Valued Quasi Nonexpansive Mappings with Some Applications," Mathematics, MDPI, vol. 7(6), pages 1-22, June.
- Timilehin O. Alakoya & Oluwatosin T. Mewomo & Yekini Shehu, 2022. "Strong convergence results for quasimonotone variational inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(2), pages 249-279, April.
- L. C. Ceng & S. Schaible & J. C. Yao, 2008. "Implicit Iteration Scheme with Perturbed Mapping for Equilibrium Problems and Fixed Point Problems of Finitely Many Nonexpansive Mappings," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 403-418, November.
- Jinzuo Chen & Mihai Postolache & Li-Jun Zhu, 2019. "Iterative Algorithms for Split Common Fixed Point Problem Involved in Pseudo-Contractive Operators without Lipschitz Assumption," Mathematics, MDPI, vol. 7(9), pages 1-13, August.
- Gang Cai & Aviv Gibali & Olaniyi S. Iyiola & Yekini Shehu, 2018. "A New Double-Projection Method for Solving Variational Inequalities in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 178(1), pages 219-239, July.
- Xin He & Nan-jing Huang & Xue-song Li, 2022. "Modified Projection Methods for Solving Multi-valued Variational Inequality without Monotonicity," Networks and Spatial Economics, Springer, vol. 22(2), pages 361-377, June.
- Lu-Chuan Ceng & Mihai Postolache & Ching-Feng Wen & Yonghong Yao, 2019. "Variational Inequalities Approaches to Minimization Problems with Constraints of Generalized Mixed Equilibria and Variational Inclusions," Mathematics, MDPI, vol. 7(3), pages 1-20, March.
- Rapeepan Kraikaew & Satit Saejung, 2012. "On Maingé’s Approach for Hierarchical Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 71-87, July.
- L. C. Zeng & N. C. Wong & J. C. Yao, 2007. "Convergence Analysis of Modified Hybrid Steepest-Descent Methods with Variable Parameters for Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 132(1), pages 51-69, January.
- S. Saeidi & D. S. Kim, 2014. "Combination of the Hybrid Steepest-Descent Method and the Viscosity Approximation," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 911-930, March.
- Lu-Chuan Ceng & Qing Yuan, 2019. "Hybrid Mann Viscosity Implicit Iteration Methods for Triple Hierarchical Variational Inequalities, Systems of Variational Inequalities and Fixed Point Problems," Mathematics, MDPI, vol. 7(2), pages 1-24, February.
- Suthep Suantai & Suparat Kesornprom & Watcharaporn Cholamjiak & Prasit Cholamjiak, 2022. "Modified Projection Method with Inertial Technique and Hybrid Stepsize for the Split Feasibility Problem," Mathematics, MDPI, vol. 10(6), pages 1-12, March.
More about this item
Keywords
method with line-search process; pseudomonotone variational inequality; strictly pseudocontractive mappings; common fixed point; sequentially weak continuity;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:10:p:925-:d:273429. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.