IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v151y2011i3d10.1007_s10957-011-9882-7.html
   My bibliography  Save this article

Iterative Methods for Triple Hierarchical Variational Inequalities in Hilbert Spaces

Author

Listed:
  • Lu-Chuan Ceng

    (Shanghai Normal University
    Scientific Computing Key Laboratory of Shanghai Universities)

  • Qamrul Hasan Ansari

    (Aligarh Muslim University)

  • Jen-Chih Yao

    (Kaohsiung Medical University)

Abstract

In this paper, we consider a variational inequality with a variational inequality constraint over a set of fixed points of a nonexpansive mapping called triple hierarchical variational inequality. We propose two iterative methods, one is implicit and another one is explicit, to compute the approximate solutions of our problem. We present an example of our problem. The convergence analysis of the sequences generated by the proposed methods is also studied.

Suggested Citation

  • Lu-Chuan Ceng & Qamrul Hasan Ansari & Jen-Chih Yao, 2011. "Iterative Methods for Triple Hierarchical Variational Inequalities in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 151(3), pages 489-512, December.
  • Handle: RePEc:spr:joptap:v:151:y:2011:i:3:d:10.1007_s10957-011-9882-7
    DOI: 10.1007/s10957-011-9882-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-011-9882-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-011-9882-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patrick Jaillet & Damien Lamberton & Bernard Lapeyre, 1990. "Variational inequalities and the pricing of American options," Post-Print hal-01667008, HAL.
    2. H. K. Xu & T. H. Kim, 2003. "Convergence of Hybrid Steepest-Descent Methods for Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 119(1), pages 185-201, October.
    3. Giuseppe Marino & Hong-Kun Xu, 2011. "Explicit Hierarchical Fixed Point Approach to Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 149(1), pages 61-78, April.
    4. H. Iiduka, 2009. "Hybrid Conjugate Gradient Method for a Convex Optimization Problem over the Fixed-Point Set of a Nonexpansive Mapping," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 463-475, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thanyarat Jitpeera & Anantachai Padcharoen & Wiyada Kumam, 2022. "On New Generalized Viscosity Implicit Double Midpoint Rule for Hierarchical Problem," Mathematics, MDPI, vol. 10(24), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L. C. Zeng & S. Schaible & J. C. Yao, 2009. "Hybrid Steepest Descent Methods for Zeros of Nonlinear Operators with Applications to Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 141(1), pages 75-91, April.
    2. Min Dai & Yue Kuen Kwok, 2006. "Characterization Of Optimal Stopping Regions Of American Asian And Lookback Options," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 63-82, January.
    3. Kanikar Muangchoo & Poom Kumam & Yeol Je Cho & Sompong Dhompongsa & Sakulbuth Ekvittayaniphon, 2019. "Approximating Fixed Points of Bregman Generalized α -Nonexpansive Mappings," Mathematics, MDPI, vol. 7(8), pages 1-28, August.
    4. Ciarcià, Carla & Daniele, Patrizia, 2016. "New existence theorems for quasi-variational inequalities and applications to financial models," European Journal of Operational Research, Elsevier, vol. 251(1), pages 288-299.
    5. Hao Zhou & Duy-Minh Dang, 2024. "Numerical analysis of American option pricing in a two-asset jump-diffusion model," Papers 2410.04745, arXiv.org, revised Oct 2024.
    6. Rafael Company & Vera Egorova & Lucas J'odar & Fazlollah Soleymani, 2017. "Computing stable numerical solutions for multidimensional American option pricing problems: a semi-discretization approach," Papers 1701.08545, arXiv.org.
    7. Zakaria Marah, 2023. "American Exchange option driven by a L\'evy process," Papers 2307.10900, arXiv.org.
    8. Ken-ichi Mitsui & Yoshio Tabata, 2005. "Wavelet based Multi-grid analysis, Wavelet Galerkin method and their Applications to American option: A Survey," Discussion Papers in Economics and Business 05-26, Osaka University, Graduate School of Economics.
    9. Pressacco, Flavio & Gaudenzi, Marcellino & Zanette, Antonino & Ziani, Laura, 2008. "New insights on testing the efficiency of methods of pricing and hedging American options," European Journal of Operational Research, Elsevier, vol. 185(1), pages 235-254, February.
    10. Jean-Paul Décamps & Thomas Mariotti & Stéphane Villeneuve, 2006. "Irreversible investment in alternative projects," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 28(2), pages 425-448, June.
    11. Cheng Cai & Tiziano De Angelis & Jan Palczewski, 2021. "The American put with finite-time maturity and stochastic interest rate," Papers 2104.08502, arXiv.org, revised Feb 2024.
    12. Battauz, A. & Pratelli, M., 2004. "Optimal stopping and American options with discrete dividends and exogenous risk," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 255-265, October.
    13. L. C. Ceng & S. Schaible & J. C. Yao, 2008. "Implicit Iteration Scheme with Perturbed Mapping for Equilibrium Problems and Fixed Point Problems of Finitely Many Nonexpansive Mappings," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 403-418, November.
    14. Zhongdi Cen & Anbo Le & Aimin Xu, 2012. "A Second-Order Difference Scheme for the Penalized Black–Scholes Equation Governing American Put Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 40(1), pages 49-62, June.
    15. Erhan Bayraktar & Hao Xing, 2009. "Pricing American options for jump diffusions by iterating optimal stopping problems for diffusions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(3), pages 505-525, December.
    16. Darae Jeong & Minhyun Yoo & Changwoo Yoo & Junseok Kim, 2019. "A Hybrid Monte Carlo and Finite Difference Method for Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 111-124, January.
    17. Damien Lamberton & Giulia Terenzi, 2019. "Properties of the American price function in the Heston-type models," Working Papers hal-02088487, HAL.
    18. Abel Azze & Bernardo D'Auria & Eduardo Garc'ia-Portugu'es, 2022. "Optimal exercise of American options under time-dependent Ornstein-Uhlenbeck processes," Papers 2211.04095, arXiv.org, revised Jun 2024.
    19. repec:dau:papers:123456789/7818 is not listed on IDEAS
    20. Ivan Guo & Nicolas Langren'e & Jiahao Wu, 2023. "Simultaneous upper and lower bounds of American option prices with hedging via neural networks," Papers 2302.12439, arXiv.org, revised Apr 2024.
    21. Barbagallo, Annamaria & Daniele, Patrizia & Giuffrè, Sofia & Maugeri, Antonino, 2014. "Variational approach for a general financial equilibrium problem: The Deficit Formula, the Balance Law and the Liability Formula. A path to the economy recovery," European Journal of Operational Research, Elsevier, vol. 237(1), pages 231-244.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:151:y:2011:i:3:d:10.1007_s10957-011-9882-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.