IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1404.1761.html
   My bibliography  Save this paper

Impulse Control of a Diffusion with a Change Point

Author

Listed:
  • Lokman A. Abbas-Turki
  • Ioannis Karatzas
  • Qinghua Li

Abstract

This paper solves a Bayes sequential impulse control problem for a diffusion, whose drift has an unobservable parameter with a change point. The partially-observed problem is reformulated into one with full observations, via a change of probability measure which removes the drift. The optimal impulse controls can be expressed in terms of the solutions and the current values of a Markov process adapted to the observation filtration. We shall illustrate the application of our results using the Longstaff-Schwartz algorithm for multiple optimal stopping times in a geometric Brownian motion stock price model with drift uncertainty.

Suggested Citation

  • Lokman A. Abbas-Turki & Ioannis Karatzas & Qinghua Li, 2014. "Impulse Control of a Diffusion with a Change Point," Papers 1404.1761, arXiv.org.
  • Handle: RePEc:arx:papers:1404.1761
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1404.1761
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patrick Jaillet & Damien Lamberton & Bernard Lapeyre, 1990. "Variational inequalities and the pricing of American options," Post-Print hal-01667008, HAL.
    2. Bruno Bouchard & Ivar Ekeland & Nizar Touzi, 2004. "On the Malliavin approach to Monte Carlo approximation of conditional expectations," Finance and Stochastics, Springer, vol. 8(1), pages 45-71, January.
    3. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    4. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    5. Bernard Lapeyre & Emmanuel Temam, 2001. "Competitive Monte Carlo methods for the pricing of Asian options," Post-Print hal-01667057, HAL.
    6. repec:dau:papers:123456789/1802 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fontana, Claudio & Grbac, Zorana & Jeanblanc, Monique & Li, Qinghua, 2014. "Information, no-arbitrage and completeness for asset price models with a change point," Stochastic Processes and their Applications, Elsevier, vol. 124(9), pages 3009-3030.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Lysbjerg Hansen, 2005. "A Malliavin-based Monte-Carlo Approach for Numerical Solution of Stochastic Control Problems: Experiences from Merton's Problem," Computing in Economics and Finance 2005 391, Society for Computational Economics.
    2. Belomestny, Denis & Kolodko, Anastasia & Schoenmakers, John G. M., 2009. "Regression methods for stochastic control problems and their convergence analysis," SFB 649 Discussion Papers 2009-026, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    3. Ivan Guo & Nicolas Langren'e & Jiahao Wu, 2023. "Simultaneous upper and lower bounds of American-style option prices with hedging via neural networks," Papers 2302.12439, arXiv.org, revised Nov 2024.
    4. Anna Battauz & Francesco Rotondi, 2022. "American options and stochastic interest rates," Computational Management Science, Springer, vol. 19(4), pages 567-604, October.
    5. Berridge, S.J. & Schumacher, J.M., 2002. "An Irregular Grid Approach for Pricing High Dimensional American Options," Discussion Paper 2002-99, Tilburg University, Center for Economic Research.
    6. Bally Vlad & Caramellino Lucia & Zanette Antonino, 2005. "Pricing and hedging American options by Monte Carlo methods using a Malliavin calculus approach," Monte Carlo Methods and Applications, De Gruyter, vol. 11(2), pages 97-133, June.
    7. Marie Bernhart & Peter Tankov & Xavier Warin, 2010. "A finite dimensional approximation for pricing moving average options," Papers 1011.3599, arXiv.org.
    8. Detemple, Jerome & Kitapbayev, Yerkin, 2022. "Optimal technology adoption for power generation," Energy Economics, Elsevier, vol. 111(C).
    9. Francisco G'omez Casanova & 'Alvaro Leitao & Fernando de Lope Contreras & Carlos V'azquez, 2024. "Deep Joint Learning valuation of Bermudan Swaptions," Papers 2404.11257, arXiv.org.
    10. Mojtaba Hajipour & Alaeddin Malek, 2015. "Efficient High-Order Numerical Methods for Pricing of Options," Computational Economics, Springer;Society for Computational Economics, vol. 45(1), pages 31-47, January.
    11. D. Belomestny & M. Kaledin & J. Schoenmakers, 2019. "Semi-tractability of optimal stopping problems via a weighted stochastic mesh algorithm," Papers 1906.09431, arXiv.org.
    12. Berridge, S.J. & Schumacher, J.M., 2004. "Pricing High-Dimensional American Options Using Local Consistency Conditions," Other publications TiSEM 8c8de631-5039-4eec-a965-3, Tilburg University, School of Economics and Management.
    13. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    14. Muthuraman, Kumar, 2008. "A moving boundary approach to American option pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 32(11), pages 3520-3537, November.
    15. Björn Bick & Holger Kraft & Claus Munk, 2013. "Solving Constrained Consumption-Investment Problems by Simulation of Artificial Market Strategies," Management Science, INFORMS, vol. 59(2), pages 485-503, June.
    16. Christian Bender & Anastasia Kolodko & John Schoenmakers, 2008. "Enhanced policy iteration for American options via scenario selection," Quantitative Finance, Taylor & Francis Journals, vol. 8(2), pages 135-146.
    17. Shen, Jinye & Huang, Weizhang & Ma, Jingtang, 2024. "An efficient and provable sequential quadratic programming method for American and swing option pricing," European Journal of Operational Research, Elsevier, vol. 316(1), pages 19-35.
    18. Fujiwara, Hajime & Kijima, Masaaki, 2007. "Pricing of path-dependent American options by Monte Carlo simulation," Journal of Economic Dynamics and Control, Elsevier, vol. 31(11), pages 3478-3502, November.
    19. Céline Labart & Jérôme Lelong, 2011. "A Parallel Algorithm for solving BSDEs - Application to the pricing and hedging of American options," Working Papers hal-00567729, HAL.
    20. Moez Mrad & Nizar Touzi & Amina Zeghal, 2006. "Monte Carlo Estimation of a Joint Density Using Malliavin Calculus, and Application to American Options," Computational Economics, Springer;Society for Computational Economics, vol. 27(4), pages 497-531, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1404.1761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.