IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v63y2006i1p87-106.html
   My bibliography  Save this article

First-order optimality conditions in set-valued optimization

Author

Listed:
  • Giovanni Crespi
  • Ivan Ginchev
  • Matteo Rocca

Abstract

A a set-valued optimization problem min C F(x), x ∈X 0 , is considered, where X 0 ⊂ X, X and Y are normed spaces, F: X 0 ⊂ Y is a set-valued function and C ⊂ Y is a closed cone. The solutions of the set-valued problem are defined as pairs (x 0 ,y 0 ), y 0 ∈F(x 0 ), and are called minimizers. The notions of w-minimizers (weakly efficient points), p-minimizers (properly efficient points) and i-minimizers (isolated minimizers) are introduced and characterized through the so called oriented distance. The relation between p-minimizers and i-minimizers under Lipschitz type conditions is investigated. The main purpose of the paper is to derive in terms of the Dini directional derivative first order necessary conditions and sufficient conditions a pair (x 0 , y 0 ) to be a w-minimizer, and similarly to be a i-minimizer. The i-minimizers seem to be a new concept in set-valued optimization. For the case of w-minimizers some comparison with existing results is done. Copyright Springer-Verlag 2006

Suggested Citation

  • Giovanni Crespi & Ivan Ginchev & Matteo Rocca, 2006. "First-order optimality conditions in set-valued optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(1), pages 87-106, February.
  • Handle: RePEc:spr:mathme:v:63:y:2006:i:1:p:87-106
    DOI: 10.1007/s00186-005-0023-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-005-0023-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-005-0023-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giancarlo Bigi & Marco Castellani, 2002. "K-epiderivatives for set-valued functions and optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 55(3), pages 401-412, June.
    2. Giancarlo Bigi & Marco Castellani, 2002. "K-epiderivatives for set-valued functions and optimization," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 55(3), pages 401-412, June.
    3. Wen Song, 1998. "A generalization of Fenchel duality in set-valued vector optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 48(2), pages 259-272, November.
    4. Johannes Jahn & Rüdiger Rauh, 1997. "Contingent epiderivatives and set-valued optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 46(2), pages 193-211, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. J. Li & K. L. Teo & X. Q. Yang, 2008. "Higher-Order Optimality Conditions for Set-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 137(3), pages 533-553, June.
    2. Ying Gao & Xin-Min Yang, 2019. "Properties of the nonlinear scalar functional and its applications to vector optimization problems," Journal of Global Optimization, Springer, vol. 73(4), pages 869-889, April.
    3. Abadir, Karim, 1995. "On Efficient Simulations in Dynamic Models," Discussion Papers 9521, University of Exeter, Department of Economics.
    4. X. X. Huang, 2012. "Calmness and Exact Penalization in Constrained Scalar Set-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 108-119, July.
    5. Giovanni P. Crespi & Carola Schrage, 2021. "Applying set optimization to weak efficiency," Annals of Operations Research, Springer, vol. 296(1), pages 779-801, January.
    6. Khushboo & C. S. Lalitha, 2018. "Scalarizations for a unified vector optimization problem based on order representing and order preserving properties," Journal of Global Optimization, Springer, vol. 70(4), pages 903-916, April.
    7. Luciano Fratocchi & Alberto Onetti & Alessia Pisoni & Marco Talaia, 2007. "Location of value added activities in hi-tech industries. The case of pharma-biotech firms in Italy," Economics and Quantitative Methods qf0708, Department of Economics, University of Insubria.
    8. N. L. H. Anh & P. Q. Khanh, 2013. "Variational Sets of Perturbation Maps and Applications to Sensitivity Analysis for Constrained Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 363-384, August.
    9. Giovanni Paolo Crespi & Andreas H. Hamel & Matteo Rocca & Carola Schrage, 2021. "Set Relations via Families of Scalar Functions and Approximate Solutions in Set Optimization," Mathematics of Operations Research, INFORMS, vol. 46(1), pages 361-381, February.
    10. Qamrul Hasan Ansari & Pradeep Kumar Sharma, 2022. "Some Properties of Generalized Oriented Distance Function and their Applications to Set Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 247-279, June.
    11. P. Q. Khanh & N. D. Tuan, 2008. "Variational Sets of Multivalued Mappings and a Unified Study of Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 139(1), pages 47-65, October.
    12. L. Huerga & B. Jiménez & V. Novo & A. Vílchez, 2021. "Six set scalarizations based on the oriented distance: continuity, convexity and application to convex set optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(2), pages 413-436, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Crespi Giovanni P. & Ginchev Ivan & Rocca Matteo, 2004. "First order optimality conditions in set-valued optimization," Economics and Quantitative Methods qf04010, Department of Economics, University of Insubria.
    2. P. Q. Khanh & N. D. Tuan, 2008. "Higher-Order Variational Sets and Higher-Order Optimality Conditions for Proper Efficiency in Set-Valued Nonsmooth Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 243-261, November.
    3. Crespi Giovanni P. & Ginchev Ivan & Rocca Matteo, 2004. "First order optimality condition for constrained set-valued optimization," Economics and Quantitative Methods qf04014, Department of Economics, University of Insubria.
    4. Yi-Hong Xu & Zhen-Hua Peng, 2018. "Second-Order M-Composed Tangent Derivative and Its Applications," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(05), pages 1-20, October.
    5. Zhenhua Peng & Yihong Xu, 2017. "New Second-Order Tangent Epiderivatives and Applications to Set-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 172(1), pages 128-140, January.
    6. Zhenhua Peng & Zhongping Wan, 2020. "Second-Order Composed Contingent Derivative of the Perturbation Map in Multiobjective Optimization," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 37(02), pages 1-23, March.
    7. S. J. Li & K. L. Teo & X. Q. Yang, 2008. "Higher-Order Optimality Conditions for Set-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 137(3), pages 533-553, June.
    8. N. L. H. Anh & P. Q. Khanh, 2013. "Variational Sets of Perturbation Maps and Applications to Sensitivity Analysis for Constrained Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 363-384, August.
    9. S. Zhu & S. Li & K. Teo, 2014. "Second-order Karush–Kuhn–Tucker optimality conditions for set-valued optimization," Journal of Global Optimization, Springer, vol. 58(4), pages 673-692, April.
    10. Xiang-Kai Sun & Sheng-Jie Li, 2014. "Generalized second-order contingent epiderivatives in parametric vector optimization problems," Journal of Global Optimization, Springer, vol. 58(2), pages 351-363, February.
    11. P. H. Sach, 2003. "Nearly Subconvexlike Set-Valued Maps and Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 119(2), pages 335-356, November.
    12. Nguyen Thi Toan & Le Quang Thuy, 2023. "S-Derivative of the Extremum Multifunction to a Multi-objective Parametric Discrete Optimal Control Problem," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 240-265, January.
    13. Elvira Hernández & Luis Rodríguez-Marín, 2011. "Weak and Strong Subgradients of Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 149(2), pages 352-365, May.
    14. Tran Van Su, 2023. "Optimality and duality for nonsmooth mathematical programming problems with equilibrium constraints," Journal of Global Optimization, Springer, vol. 85(3), pages 663-685, March.
    15. Nguyen Anh & Phan Khanh, 2013. "Higher-order optimality conditions in set-valued optimization using radial sets and radial derivatives," Journal of Global Optimization, Springer, vol. 56(2), pages 519-536, June.
    16. Tran Su & Dinh Dieu Hang, 2022. "Optimality and duality in nonsmooth multiobjective fractional programming problem with constraints," 4OR, Springer, vol. 20(1), pages 105-137, March.
    17. Abadir, Karim, 1995. "On Efficient Simulations in Dynamic Models," Discussion Papers 9521, University of Exeter, Department of Economics.
    18. A. Y. Azimov, 2008. "Duality for Set-Valued Multiobjective Optimization Problems, Part 1: Mathematical Programming," Journal of Optimization Theory and Applications, Springer, vol. 137(1), pages 61-74, April.
    19. D. S. Kim & G. M. Lee & P. H. Sach, 2004. "Hartley Proper Efficiency in Multifunction Optimization," Journal of Optimization Theory and Applications, Springer, vol. 120(1), pages 129-145, January.
    20. C. R. Chen & S. J. Li, 2009. "Different Conjugate Dual Problems in Vector Optimization and Their Relations," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 443-461, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:63:y:2006:i:1:p:87-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.