IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v134y2007i3d10.1007_s10957-007-9229-6.html
   My bibliography  Save this article

Functional Optimal Estimation Problems and Their Solution by Nonlinear Approximation Schemes

Author

Listed:
  • A. Alessandri

    (University of Genova)

  • C. Cervellera

    (National Research Council of Italy)

  • M. Sanguineti

    (University of Genova)

Abstract

The design of state estimators for nonlinear dynamic systems affected by disturbances is addressed in a functional optimization framework. The estimator contains an innovation function that has to be chosen within a suitably defined class of functions in such a way to minimize a cost functional given by the worst-case ratio of the ℒ p norms of the estimation error and the disturbances. Since this entails an infinite-dimensional optimization problem that under general hypotheses cannot be solved analytically, an approximate solution is sought by minimizing the cost functional over linear combinations of simple “basis functions,” represented by computational units with adjustable parameters. The selection of the parameters is made by solving a constrained nonlinear programming problem, where the constraints are given by pointwise conditions that ensure the well-definiteness of the functional and the existence of a solution. Penalty terms are introduced in the cost function to account for constraints imposed on points that result from sampling the sets to which the trajectories of the state and of the estimation error belong. To ensure an efficient covering of the sets, low-discrepancy sampling techniques are exploited that generate samples deterministically spread in a uniform way, without leaving regions of the space undersampled.

Suggested Citation

  • A. Alessandri & C. Cervellera & M. Sanguineti, 2007. "Functional Optimal Estimation Problems and Their Solution by Nonlinear Approximation Schemes," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 445-466, September.
  • Handle: RePEc:spr:joptap:v:134:y:2007:i:3:d:10.1007_s10957-007-9229-6
    DOI: 10.1007/s10957-007-9229-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-007-9229-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-007-9229-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Zoppoli & M. Sanguineti & T. Parisini, 2002. "Approximating Networks and Extended Ritz Method for the Solution of Functional Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 112(2), pages 403-440, February.
    2. Cervellera, Cristiano & Chen, Victoria C.P. & Wen, Aihong, 2006. "Optimization of a large-scale water reservoir network by stochastic dynamic programming with efficient state space discretization," European Journal of Operational Research, Elsevier, vol. 171(3), pages 1139-1151, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giorgio Gnecco, 2016. "On the Curse of Dimensionality in the Ritz Method," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 488-509, February.
    2. Angelo Alessandri & Giorgio Gnecco & Marcello Sanguineti, 2010. "Minimizing Sequences for a Family of Functional Optimal Estimation Problems," Journal of Optimization Theory and Applications, Springer, vol. 147(2), pages 243-262, November.
    3. S. Giulini & M. Sanguineti, 2009. "Approximation Schemes for Functional Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 33-54, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cervellera, C. & Macciò, D., 2011. "A comparison of global and semi-local approximation in T-stage stochastic optimization," European Journal of Operational Research, Elsevier, vol. 208(2), pages 109-118, January.
    2. Zéphyr, Luckny & Lang, Pascal & Lamond, Bernard F. & Côté, Pascal, 2017. "Approximate stochastic dynamic programming for hydroelectric production planning," European Journal of Operational Research, Elsevier, vol. 262(2), pages 586-601.
    3. Mauro Gaggero & Giorgio Gnecco & Marcello Sanguineti, 2013. "Dynamic Programming and Value-Function Approximation in Sequential Decision Problems: Error Analysis and Numerical Results," Journal of Optimization Theory and Applications, Springer, vol. 156(2), pages 380-416, February.
    4. Zehua Yang & Victoria C. P. Chen & Michael E. Chang & Melanie L. Sattler & Aihong Wen, 2009. "A Decision-Making Framework for Ozone Pollution Control," Operations Research, INFORMS, vol. 57(2), pages 484-498, April.
    5. M. Baglietto & C. Cervellera & M. Sanguineti & R. Zoppoli, 2010. "Management of water resource systems in the presence of uncertainties by nonlinear approximation techniques and deterministic sampling," Computational Optimization and Applications, Springer, vol. 47(2), pages 349-376, October.
    6. Gaivoronski, Alexei & Sechi, Giovanni M. & Zuddas, Paola, 2012. "Cost/risk balanced management of scarce resources using stochastic programming," European Journal of Operational Research, Elsevier, vol. 216(1), pages 214-224.
    7. Dias, Bruno Henriques & Tomim, Marcelo Aroca & Marcato, André Luís Marques & Ramos, Tales Pulinho & Brandi, Rafael Bruno S. & Junior, Ivo Chaves da Silva & Filho, João Alberto Passos, 2013. "Parallel computing applied to the stochastic dynamic programming for long term operation planning of hydrothermal power systems," European Journal of Operational Research, Elsevier, vol. 229(1), pages 212-222.
    8. Ji He & Xiaoqi Guo & Haitao Chen & Fuxin Chai & Shengming Liu & Hongping Zhang & Wenbin Zang & Songlin Wang, 2023. "Application of HSMAAOA Algorithm in Flood Control Optimal Operation of Reservoir Groups," Sustainability, MDPI, vol. 15(2), pages 1-16, January.
    9. G. Gnecco & M. Sanguineti, 2010. "Estimates of Variation with Respect to a Set and Applications to Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 145(1), pages 53-75, April.
    10. Ariyajunya, Bancha & Chen, Ying & Chen, Victoria C.P. & Kim, Seoung Bum & Rosenberger, Jay, 2021. "Addressing state space multicollinearity in solving an ozone pollution dynamic control problem," European Journal of Operational Research, Elsevier, vol. 289(2), pages 683-695.
    11. Cervellera, Cristiano & Caviglione, Luca, 2009. "Optimization of a peer-to-peer system for efficient content replication," European Journal of Operational Research, Elsevier, vol. 196(2), pages 423-433, July.
    12. Borodin, Valeria & Bourtembourg, Jean & Hnaien, Faicel & Labadie, Nacima, 2015. "A multi-step rolled forward chance-constrained model and a proactive dynamic approach for the wheat crop quality control problem," European Journal of Operational Research, Elsevier, vol. 246(2), pages 631-640.
    13. Huiyuan Fan & Prashant K. Tarun & Victoria C. P. Chen & Dachuan T. Shih & Jay M. Rosenberger & Seoung Bum Kim & Robert A. Horton, 2018. "Data-driven optimization for Dallas Fort Worth International Airport deicing activities," Annals of Operations Research, Springer, vol. 263(1), pages 361-384, April.
    14. Andrea Bacigalupo & Giorgio Gnecco & Marco Lepidi & Luigi Gambarotta, 2020. "Machine-Learning Techniques for the Optimal Design of Acoustic Metamaterials," Journal of Optimization Theory and Applications, Springer, vol. 187(3), pages 630-653, December.
    15. Cristiano Cervellera & Danilo Macciò & Marco Muselli, 2010. "Functional Optimization Through Semilocal Approximate Minimization," Operations Research, INFORMS, vol. 58(5), pages 1491-1504, October.
    16. Angelo Alessandri & Patrizia Bagnerini & Roberto Cianci & Mauro Gaggero, 2019. "Optimal Propagating Fronts Using Hamilton-Jacobi Equations," Mathematics, MDPI, vol. 7(11), pages 1-10, November.
    17. A. Alessandri & L. Cassettari & R. Mosca, 2009. "Nonparametric nonlinear regression using polynomial and neural approximators: a numerical comparison," Computational Management Science, Springer, vol. 6(1), pages 5-24, February.
    18. Mauro Gaggero & Giorgio Gnecco & Marcello Sanguineti, 2014. "Approximate dynamic programming for stochastic N-stage optimization with application to optimal consumption under uncertainty," Computational Optimization and Applications, Springer, vol. 58(1), pages 31-85, May.
    19. Cervellera, Cristiano, 2023. "Optimized ensemble value function approximation for dynamic programming," European Journal of Operational Research, Elsevier, vol. 309(2), pages 719-730.
    20. G. Gnecco & M. Sanguineti, 2010. "Suboptimal Solutions to Dynamic Optimization Problems via Approximations of the Policy Functions," Journal of Optimization Theory and Applications, Springer, vol. 146(3), pages 764-794, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:134:y:2007:i:3:d:10.1007_s10957-007-9229-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.