IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v196y2009i2p423-433.html
   My bibliography  Save this article

Optimization of a peer-to-peer system for efficient content replication

Author

Listed:
  • Cervellera, Cristiano
  • Caviglione, Luca

Abstract

This paper introduces a framework for the optimization of a peer-to-peer (p2p) based content replication system, aiming at actively exploiting the presence of a centralized component that represents a recent trend in content delivery architectures. To this purpose, we formalize a real-time mixed-integer nonlinear programming problem over a discrete time dynamic system, and propose a hybrid random/nonlinear programming scheme that allows to find good solutions while remaining computationally feasible. Two performance indexes, representing different objectives of the content replication process (e.g., speed vs. improved resistance against node failures), are discussed. Simulative tests are presented to prove the effectiveness of the proposed solution, with respect to typical strategies adopted by existing systems.

Suggested Citation

  • Cervellera, Cristiano & Caviglione, Luca, 2009. "Optimization of a peer-to-peer system for efficient content replication," European Journal of Operational Research, Elsevier, vol. 196(2), pages 423-433, July.
  • Handle: RePEc:eee:ejores:v:196:y:2009:i:2:p:423-433
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00353-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitri P. Bertsekas & John N. Tsitsiklis, 1991. "An Analysis of Stochastic Shortest Path Problems," Mathematics of Operations Research, INFORMS, vol. 16(3), pages 580-595, August.
    2. Cervellera, Cristiano & Chen, Victoria C.P. & Wen, Aihong, 2006. "Optimization of a large-scale water reservoir network by stochastic dynamic programming with efficient state space discretization," European Journal of Operational Research, Elsevier, vol. 171(3), pages 1139-1151, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zéphyr, Luckny & Lang, Pascal & Lamond, Bernard F. & Côté, Pascal, 2017. "Approximate stochastic dynamic programming for hydroelectric production planning," European Journal of Operational Research, Elsevier, vol. 262(2), pages 586-601.
    2. Raymond K. Cheung & B. Muralidharan, 2000. "Dynamic Routing for Priority Shipments in LTL Service Networks," Transportation Science, INFORMS, vol. 34(1), pages 86-98, February.
    3. E. Nikolova & N. E. Stier-Moses, 2014. "A Mean-Risk Model for the Traffic Assignment Problem with Stochastic Travel Times," Operations Research, INFORMS, vol. 62(2), pages 366-382, April.
    4. Eric A. Hansen, 2017. "Error bounds for stochastic shortest path problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(1), pages 1-27, August.
    5. Zehua Yang & Victoria C. P. Chen & Michael E. Chang & Melanie L. Sattler & Aihong Wen, 2009. "A Decision-Making Framework for Ozone Pollution Control," Operations Research, INFORMS, vol. 57(2), pages 484-498, April.
    6. Fernando Ordóñez & Nicolás E. Stier-Moses, 2010. "Wardrop Equilibria with Risk-Averse Users," Transportation Science, INFORMS, vol. 44(1), pages 63-86, February.
    7. Matthew H. Henry & Yacov Y. Haimes, 2009. "A Comprehensive Network Security Risk Model for Process Control Networks," Risk Analysis, John Wiley & Sons, vol. 29(2), pages 223-248, February.
    8. Carey E. Priebe & Donniell E. Fishkind & Lowell Abrams & Christine D. Piatko, 2005. "Random disambiguation paths for traversing a mapped hazard field," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(3), pages 285-292, April.
    9. Dimitri P. Bertsekas, 2019. "Robust shortest path planning and semicontractive dynamic programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(1), pages 15-37, February.
    10. A. Y. Golubin, 2003. "A Note on the Convergence of Policy Iteration in Markov Decision Processes with Compact Action Spaces," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 194-200, February.
    11. Pretolani, Daniele, 2000. "A directed hypergraph model for random time dependent shortest paths," European Journal of Operational Research, Elsevier, vol. 123(2), pages 315-324, June.
    12. Gaivoronski, Alexei & Sechi, Giovanni M. & Zuddas, Paola, 2012. "Cost/risk balanced management of scarce resources using stochastic programming," European Journal of Operational Research, Elsevier, vol. 216(1), pages 214-224.
    13. Azadian, Farshid & Murat, Alper E. & Chinnam, Ratna Babu, 2012. "Dynamic routing of time-sensitive air cargo using real-time information," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 355-372.
    14. Dias, Bruno Henriques & Tomim, Marcelo Aroca & Marcato, André Luís Marques & Ramos, Tales Pulinho & Brandi, Rafael Bruno S. & Junior, Ivo Chaves da Silva & Filho, João Alberto Passos, 2013. "Parallel computing applied to the stochastic dynamic programming for long term operation planning of hydrothermal power systems," European Journal of Operational Research, Elsevier, vol. 229(1), pages 212-222.
    15. Ji He & Xiaoqi Guo & Haitao Chen & Fuxin Chai & Shengming Liu & Hongping Zhang & Wenbin Zang & Songlin Wang, 2023. "Application of HSMAAOA Algorithm in Flood Control Optimal Operation of Reservoir Groups," Sustainability, MDPI, vol. 15(2), pages 1-16, January.
    16. Emin Karagözoglu & Cagri Saglam & Agah R. Turan, 2020. "Tullock Brings Perseverance and Suspense to Tug-of-War," CESifo Working Paper Series 8103, CESifo.
    17. Huizhen Yu & Dimitri Bertsekas, 2013. "Q-learning and policy iteration algorithms for stochastic shortest path problems," Annals of Operations Research, Springer, vol. 208(1), pages 95-132, September.
    18. Dolinskaya, Irina & Shi, Zhenyu (Edwin) & Smilowitz, Karen, 2018. "Adaptive orienteering problem with stochastic travel times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 1-19.
    19. Arthur Flajolet & Sébastien Blandin & Patrick Jaillet, 2018. "Robust Adaptive Routing Under Uncertainty," Operations Research, INFORMS, vol. 66(1), pages 210-229, January.
    20. Benkert, Jean-Michel & Letina, Igor & Nöldeke, Georg, 2018. "Optimal search from multiple distributions with infinite horizon," Economics Letters, Elsevier, vol. 164(C), pages 15-18.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:196:y:2009:i:2:p:423-433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.