IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i11p1122-d287799.html
   My bibliography  Save this article

Optimal Propagating Fronts Using Hamilton-Jacobi Equations

Author

Listed:
  • Angelo Alessandri

    (Department of Mechanical Engineering (DIME), University of Genoa, 16145 Genoa, Italy)

  • Patrizia Bagnerini

    (Department of Mechanical Engineering (DIME), University of Genoa, 16145 Genoa, Italy)

  • Roberto Cianci

    (Department of Mechanical Engineering (DIME), University of Genoa, 16145 Genoa, Italy)

  • Mauro Gaggero

    (Institute of Marine Engineering (INM), National Research Council of Italy, Via De Marini 6, 16149 Genoa, Italy)

Abstract

The optimal handling of level sets associated to the solution of Hamilton-Jacobi equations such as the normal flow equation is investigated. The goal is to find the normal velocity minimizing a suitable cost functional that accounts for a desired behavior of level sets over time. Sufficient conditions of optimality are derived that require the solution of a system of nonlinear Hamilton-Jacobi equations. Since finding analytic solutions is difficult in general, the use of numerical methods to obtain approximate solutions is addressed by dealing with some case studies in two and three dimensions.

Suggested Citation

  • Angelo Alessandri & Patrizia Bagnerini & Roberto Cianci & Mauro Gaggero, 2019. "Optimal Propagating Fronts Using Hamilton-Jacobi Equations," Mathematics, MDPI, vol. 7(11), pages 1-10, November.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:11:p:1122-:d:287799
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/11/1122/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/11/1122/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. W. Beard & G. N. Saridis & J. T. Wen, 1998. "Approximate Solutions to the Time-Invariant Hamilton–Jacobi–Bellman Equation," Journal of Optimization Theory and Applications, Springer, vol. 96(3), pages 589-626, March.
    2. Imane Abouelkheir & Fadwa El Kihal & Mostafa Rachik & Ilias Elmouki, 2019. "Optimal Impulse Vaccination Approach for an SIR Control Model with Short-Term Immunity," Mathematics, MDPI, vol. 7(5), pages 1-21, May.
    3. R. Zoppoli & M. Sanguineti & T. Parisini, 2002. "Approximating Networks and Extended Ritz Method for the Solution of Functional Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 112(2), pages 403-440, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mauro Gaggero & Giorgio Gnecco & Marcello Sanguineti, 2013. "Dynamic Programming and Value-Function Approximation in Sequential Decision Problems: Error Analysis and Numerical Results," Journal of Optimization Theory and Applications, Springer, vol. 156(2), pages 380-416, February.
    2. Yunhan Huang & Quanyan Zhu, 2022. "Game-Theoretic Frameworks for Epidemic Spreading and Human Decision-Making: A Review," Dynamic Games and Applications, Springer, vol. 12(1), pages 7-48, March.
    3. Gamboa, M. & López-García, M. & Lopez-Herrero, M.J., 2024. "On the exact and population bi-dimensional reproduction numbers in a stochastic SVIR model with imperfect vaccine," Applied Mathematics and Computation, Elsevier, vol. 468(C).
    4. M. Baglietto & C. Cervellera & M. Sanguineti & R. Zoppoli, 2010. "Management of water resource systems in the presence of uncertainties by nonlinear approximation techniques and deterministic sampling," Computational Optimization and Applications, Springer, vol. 47(2), pages 349-376, October.
    5. G. Gnecco & M. Sanguineti, 2010. "Estimates of Variation with Respect to a Set and Applications to Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 145(1), pages 53-75, April.
    6. S. C. Beeler & H. T. Tran & H. T. Banks, 2000. "Feedback Control Methodologies for Nonlinear Systems," Journal of Optimization Theory and Applications, Springer, vol. 107(1), pages 1-33, October.
    7. Andrea Bacigalupo & Giorgio Gnecco & Marco Lepidi & Luigi Gambarotta, 2020. "Machine-Learning Techniques for the Optimal Design of Acoustic Metamaterials," Journal of Optimization Theory and Applications, Springer, vol. 187(3), pages 630-653, December.
    8. Cristiano Cervellera & Danilo Macciò & Marco Muselli, 2010. "Functional Optimization Through Semilocal Approximate Minimization," Operations Research, INFORMS, vol. 58(5), pages 1491-1504, October.
    9. A. Alessandri & L. Cassettari & R. Mosca, 2009. "Nonparametric nonlinear regression using polynomial and neural approximators: a numerical comparison," Computational Management Science, Springer, vol. 6(1), pages 5-24, February.
    10. Mauro Gaggero & Giorgio Gnecco & Marcello Sanguineti, 2014. "Approximate dynamic programming for stochastic N-stage optimization with application to optimal consumption under uncertainty," Computational Optimization and Applications, Springer, vol. 58(1), pages 31-85, May.
    11. G. Gnecco & M. Sanguineti, 2010. "Suboptimal Solutions to Dynamic Optimization Problems via Approximations of the Policy Functions," Journal of Optimization Theory and Applications, Springer, vol. 146(3), pages 764-794, September.
    12. Giorgio Gnecco, 2016. "On the Curse of Dimensionality in the Ritz Method," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 488-509, February.
    13. Angelo Alessandri & Giorgio Gnecco & Marcello Sanguineti, 2010. "Minimizing Sequences for a Family of Functional Optimal Estimation Problems," Journal of Optimization Theory and Applications, Springer, vol. 147(2), pages 243-262, November.
    14. S. Giulini & M. Sanguineti, 2009. "Approximation Schemes for Functional Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 33-54, January.
    15. Maria Gamboa & Maria Jesus Lopez-Herrero, 2020. "The Effect of Setting a Warning Vaccination Level on a Stochastic SIVS Model with Imperfect Vaccine," Mathematics, MDPI, vol. 8(7), pages 1-23, July.
    16. Cervellera, C. & Macciò, D., 2011. "A comparison of global and semi-local approximation in T-stage stochastic optimization," European Journal of Operational Research, Elsevier, vol. 208(2), pages 109-118, January.
    17. Goodarzi, Milad & Meinerding, Christoph, 2023. "Asset allocation with recursive parameter updating and macroeconomic regime identifiers," Discussion Papers 06/2023, Deutsche Bundesbank.
    18. A. Alessandri & C. Cervellera & M. Sanguineti, 2007. "Functional Optimal Estimation Problems and Their Solution by Nonlinear Approximation Schemes," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 445-466, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:11:p:1122-:d:287799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.