Nonparametric nonlinear regression using polynomial and neural approximators: a numerical comparison
Author
Abstract
Suggested Citation
DOI: 10.1007/s10287-008-0074-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- R. Zoppoli & M. Sanguineti & T. Parisini, 2002. "Approximating Networks and Extended Ritz Method for the Solution of Functional Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 112(2), pages 403-440, February.
- Pollard, David & Radchenko, Peter, 2006. "Nonlinear least-squares estimation," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 548-562, February.
- Shuhe, Hu, 2004. "Consistency for the least squares estimator in nonlinear regression model," Statistics & Probability Letters, Elsevier, vol. 67(2), pages 183-192, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- G. Gnecco & M. Sanguineti, 2010. "Estimates of Variation with Respect to a Set and Applications to Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 145(1), pages 53-75, April.
- G. Gnecco & M. Sanguineti, 2010. "Suboptimal Solutions to Dynamic Optimization Problems via Approximations of the Policy Functions," Journal of Optimization Theory and Applications, Springer, vol. 146(3), pages 764-794, September.
- Giorgio Gnecco, 2016. "On the Curse of Dimensionality in the Ritz Method," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 488-509, February.
- Angelo Alessandri & Giorgio Gnecco & Marcello Sanguineti, 2010. "Minimizing Sequences for a Family of Functional Optimal Estimation Problems," Journal of Optimization Theory and Applications, Springer, vol. 147(2), pages 243-262, November.
- S. Giulini & M. Sanguineti, 2009. "Approximation Schemes for Functional Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 33-54, January.
- Radchenko, Peter, 2015. "High dimensional single index models," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 266-282.
- Lyubchich, Vyacheslav & Gel, Yulia R., 2016. "A local factor nonparametric test for trend synchronism in multiple time series," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 91-104.
- Mauro Gaggero & Giorgio Gnecco & Marcello Sanguineti, 2013. "Dynamic Programming and Value-Function Approximation in Sequential Decision Problems: Error Analysis and Numerical Results," Journal of Optimization Theory and Applications, Springer, vol. 156(2), pages 380-416, February.
- M. Baglietto & C. Cervellera & M. Sanguineti & R. Zoppoli, 2010. "Management of water resource systems in the presence of uncertainties by nonlinear approximation techniques and deterministic sampling," Computational Optimization and Applications, Springer, vol. 47(2), pages 349-376, October.
- Cheng Maolin, 2016. "A Generalized Constant Elasticity of Substitution Production Function Model and Its Application," Journal of Systems Science and Information, De Gruyter, vol. 4(3), pages 269-279, June.
- Cheng Maolin & Shi Guojun & Han Yun, 2019. "A Modified CES Production Function Model and Its Application in Calculating the Contribution Rate of Energy and Other Influencing Factors to Economic Growth," Journal of Systems Science and Information, De Gruyter, vol. 7(2), pages 161-172, April.
- Andrea Bacigalupo & Giorgio Gnecco & Marco Lepidi & Luigi Gambarotta, 2020. "Machine-Learning Techniques for the Optimal Design of Acoustic Metamaterials," Journal of Optimization Theory and Applications, Springer, vol. 187(3), pages 630-653, December.
- Cristiano Cervellera & Danilo Macciò & Marco Muselli, 2010. "Functional Optimization Through Semilocal Approximate Minimization," Operations Research, INFORMS, vol. 58(5), pages 1491-1504, October.
- Angelo Alessandri & Patrizia Bagnerini & Roberto Cianci & Mauro Gaggero, 2019. "Optimal Propagating Fronts Using Hamilton-Jacobi Equations," Mathematics, MDPI, vol. 7(11), pages 1-10, November.
- Mauro Gaggero & Giorgio Gnecco & Marcello Sanguineti, 2014. "Approximate dynamic programming for stochastic N-stage optimization with application to optimal consumption under uncertainty," Computational Optimization and Applications, Springer, vol. 58(1), pages 31-85, May.
- Pengfei Liu & Mengchen Zhang & Ru Zhang & Qin Zhou, 2021. "Robust Estimation and Tests for Parameters of Some Nonlinear Regression Models," Mathematics, MDPI, vol. 9(6), pages 1-16, March.
- Cervellera, C. & Macciò, D., 2011. "A comparison of global and semi-local approximation in T-stage stochastic optimization," European Journal of Operational Research, Elsevier, vol. 208(2), pages 109-118, January.
- Yang, Wenzhi & Hu, Shuhe, 2014. "Large deviation for a least squares estimator in a nonlinear regression model," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 135-144.
- Cui, Hengjian & Hu, Tao, 2011. "On nonlinear regression estimator with denoised variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1137-1149, February.
- A. Alessandri & C. Cervellera & M. Sanguineti, 2007. "Functional Optimal Estimation Problems and Their Solution by Nonlinear Approximation Schemes," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 445-466, September.
More about this item
Keywords
Nonparametric regression; Polynomial approximation; Neural approximation; Least squares;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:6:y:2009:i:1:p:5-24. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.