IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v114y2002i3d10.1023_a1016083231326.html
   My bibliography  Save this article

Global Optimization Approach to Unequal Global Optimization Approach to Unequal Sphere Packing Problems in 3D

Author

Listed:
  • A. Sutou

    (Central Research Laboratory, Hitachi)

  • Y. Dai

    (University of Illinois at Chicago)

Abstract

The problem of the unequal sphere packing in a 3-dimen-sional polytope is analyzed. Given a set of unequal spheres and a poly-tope, the double goal is to assemble the spheres in such a way that (i) they do not overlap with each other and (ii) the sum of the volumes of the spheres packed in the polytope is maximized. This optimization has an application in automated radiosurgical treatment planning and can be formulated as a nonconvex optimization problem with quadratic constraints and a linear objective function. On the basis of the special structures associated with this problem, we propose a variety of algorithms which improve markedly the existing simplicial branch-and-bound algorithm for the general nonconvex quadratic program. Further, heuristic algorithms are incorporated to strengthen the efficiency of the algorithm. The computational study demonstrates that the proposed algorithm can obtain successfully the optimization up to a limiting size.

Suggested Citation

  • A. Sutou & Y. Dai, 2002. "Global Optimization Approach to Unequal Global Optimization Approach to Unequal Sphere Packing Problems in 3D," Journal of Optimization Theory and Applications, Springer, vol. 114(3), pages 671-694, September.
  • Handle: RePEc:spr:joptap:v:114:y:2002:i:3:d:10.1023_a:1016083231326
    DOI: 10.1023/A:1016083231326
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1016083231326
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1016083231326?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jie Wang, 1999. "Packing of Unequal Spheres and Automated Radiosurgical Treatment Planning," Journal of Combinatorial Optimization, Springer, vol. 3(4), pages 453-463, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andreas Fischer & Igor Litvinchev & Tetyana Romanova & Petro Stetsyuk & Georgiy Yaskov, 2023. "Quasi-Packing Different Spheres with Ratio Conditions in a Spherical Container," Mathematics, MDPI, vol. 11(9), pages 1-19, April.
    2. Igor Litvinchev & Andreas Fischer & Tetyana Romanova & Petro Stetsyuk, 2024. "A New Class of Irregular Packing Problems Reducible to Sphere Packing in Arbitrary Norms," Mathematics, MDPI, vol. 12(7), pages 1-17, March.
    3. Bortfeldt, Andreas & Wäscher, Gerhard, 2013. "Constraints in container loading – A state-of-the-art review," European Journal of Operational Research, Elsevier, vol. 229(1), pages 1-20.
    4. Hifi, Mhand & Yousef, Labib, 2019. "A local search-based method for sphere packing problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 482-500.
    5. Moslem Zamani, 2023. "New bounds for nonconvex quadratically constrained quadratic programming," Journal of Global Optimization, Springer, vol. 85(3), pages 595-613, March.
    6. Stoyan, Yu. & Chugay, A., 2009. "Packing cylinders and rectangular parallelepipeds with distances between them into a given region," European Journal of Operational Research, Elsevier, vol. 197(2), pages 446-455, September.
    7. Jean-Thomas Camino & Christian Artigues & Laurent Houssin & Stéphane Mourgues, 2019. "Linearization of Euclidean norm dependent inequalities applied to multibeam satellites design," Computational Optimization and Applications, Springer, vol. 73(2), pages 679-705, June.
    8. S. P. Li & Ka-Lok Ng, 2003. "Study Of The Unequal Spheres Packing Problem: An Application To Radiosurgery Treatment," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 14(06), pages 815-823.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bortfeldt, Andreas & Wäscher, Gerhard, 2013. "Constraints in container loading – A state-of-the-art review," European Journal of Operational Research, Elsevier, vol. 229(1), pages 1-20.
    2. Andreas Fischer & Igor Litvinchev & Tetyana Romanova & Petro Stetsyuk & Georgiy Yaskov, 2024. "Packing spheres with quasi-containment conditions," Journal of Global Optimization, Springer, vol. 90(3), pages 671-689, November.
    3. Jie Wang, 2000. "Medial Axis and Optimal Locations for Min-Max Sphere Packing," Journal of Combinatorial Optimization, Springer, vol. 4(4), pages 487-503, December.
    4. Evgueniia Doudareva & Kimia Ghobadi & Dionne Aleman & Mark Ruschin & David Jaffray, 2015. "Skeletonization for isocentre selection in Gamma Knife® Perfexion™," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 369-385, July.
    5. Hifi, Mhand & Yousef, Labib, 2019. "A local search-based method for sphere packing problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 482-500.
    6. Li, S.P & Ng, Ka-Lok, 2003. "Monte Carlo study of the sphere packing problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 321(1), pages 359-363.
    7. Andreas Fischer & Igor Litvinchev & Tetyana Romanova & Petro Stetsyuk & Georgiy Yaskov, 2023. "Quasi-Packing Different Spheres with Ratio Conditions in a Spherical Container," Mathematics, MDPI, vol. 11(9), pages 1-19, April.
    8. Stoyan, Yu. & Chugay, A., 2009. "Packing cylinders and rectangular parallelepipeds with distances between them into a given region," European Journal of Operational Research, Elsevier, vol. 197(2), pages 446-455, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:114:y:2002:i:3:d:10.1023_a:1016083231326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.