IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v3y1999i4d10.1023_a1009831621621.html
   My bibliography  Save this article

Packing of Unequal Spheres and Automated Radiosurgical Treatment Planning

Author

Listed:
  • Jie Wang

    (University of North Carolina at Greensboro)

Abstract

We study an optimization problem of packing unequal spheres into a three-dimensional (3D) bounded region in connection with radiosurgical treatment planning. Given an input (R, V, S, L), where R is a 3D bounded region, V a positive integer, S a multiset of spheres, and L a location constraint on spheres, we want to find a packing of R using the minimum number of spheres in S such that the covered volume is at least V; the location constraint L is satisfied; and the number of points on the boundary of R that are touched by spheres is maximized. Such a packing arrangement corresponds to an optimal radiosurgical treatment planning. Finding an optimal solution to the problem, however, is computationally intractable. In particular, we show that this optimization problem and several related problems are NP-hard. Hence, some form of approximations is needed. One approach is to consider a simplified problem under the assumption that spheres of arbitrary (integral) diameters are available with unlimited supply, and there are no location constraints. This approach has met with certain success in medical applications using a dynamic programming algorithm (Bourland and Wu, 1996; Wu, 1996). We propose in this paper an improvement to the algorithm that can greatly reduce its computation cost.

Suggested Citation

  • Jie Wang, 1999. "Packing of Unequal Spheres and Automated Radiosurgical Treatment Planning," Journal of Combinatorial Optimization, Springer, vol. 3(4), pages 453-463, December.
  • Handle: RePEc:spr:jcomop:v:3:y:1999:i:4:d:10.1023_a:1009831621621
    DOI: 10.1023/A:1009831621621
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1009831621621
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1009831621621?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andreas Fischer & Igor Litvinchev & Tetyana Romanova & Petro Stetsyuk & Georgiy Yaskov, 2023. "Quasi-Packing Different Spheres with Ratio Conditions in a Spherical Container," Mathematics, MDPI, vol. 11(9), pages 1-19, April.
    2. Andreas Fischer & Igor Litvinchev & Tetyana Romanova & Petro Stetsyuk & Georgiy Yaskov, 2024. "Packing spheres with quasi-containment conditions," Journal of Global Optimization, Springer, vol. 90(3), pages 671-689, November.
    3. Bortfeldt, Andreas & Wäscher, Gerhard, 2013. "Constraints in container loading – A state-of-the-art review," European Journal of Operational Research, Elsevier, vol. 229(1), pages 1-20.
    4. Evgueniia Doudareva & Kimia Ghobadi & Dionne Aleman & Mark Ruschin & David Jaffray, 2015. "Skeletonization for isocentre selection in Gamma Knife® Perfexion™," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 369-385, July.
    5. Hifi, Mhand & Yousef, Labib, 2019. "A local search-based method for sphere packing problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 482-500.
    6. A. Sutou & Y. Dai, 2002. "Global Optimization Approach to Unequal Global Optimization Approach to Unequal Sphere Packing Problems in 3D," Journal of Optimization Theory and Applications, Springer, vol. 114(3), pages 671-694, September.
    7. Jie Wang, 2000. "Medial Axis and Optimal Locations for Min-Max Sphere Packing," Journal of Combinatorial Optimization, Springer, vol. 4(4), pages 487-503, December.
    8. Stoyan, Yu. & Chugay, A., 2009. "Packing cylinders and rectangular parallelepipeds with distances between them into a given region," European Journal of Operational Research, Elsevier, vol. 197(2), pages 446-455, September.
    9. Li, S.P & Ng, Ka-Lok, 2003. "Monte Carlo study of the sphere packing problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 321(1), pages 359-363.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:3:y:1999:i:4:d:10.1023_a:1009831621621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.