Packing of Unequal Spheres and Automated Radiosurgical Treatment Planning
Author
Abstract
Suggested Citation
DOI: 10.1023/A:1009831621621
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Andreas Fischer & Igor Litvinchev & Tetyana Romanova & Petro Stetsyuk & Georgiy Yaskov, 2023. "Quasi-Packing Different Spheres with Ratio Conditions in a Spherical Container," Mathematics, MDPI, vol. 11(9), pages 1-19, April.
- Andreas Fischer & Igor Litvinchev & Tetyana Romanova & Petro Stetsyuk & Georgiy Yaskov, 2024. "Packing spheres with quasi-containment conditions," Journal of Global Optimization, Springer, vol. 90(3), pages 671-689, November.
- Bortfeldt, Andreas & Wäscher, Gerhard, 2013. "Constraints in container loading – A state-of-the-art review," European Journal of Operational Research, Elsevier, vol. 229(1), pages 1-20.
- Evgueniia Doudareva & Kimia Ghobadi & Dionne Aleman & Mark Ruschin & David Jaffray, 2015. "Skeletonization for isocentre selection in Gamma Knife® Perfexion™," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 369-385, July.
- Hifi, Mhand & Yousef, Labib, 2019. "A local search-based method for sphere packing problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 482-500.
- A. Sutou & Y. Dai, 2002. "Global Optimization Approach to Unequal Global Optimization Approach to Unequal Sphere Packing Problems in 3D," Journal of Optimization Theory and Applications, Springer, vol. 114(3), pages 671-694, September.
- Jie Wang, 2000. "Medial Axis and Optimal Locations for Min-Max Sphere Packing," Journal of Combinatorial Optimization, Springer, vol. 4(4), pages 487-503, December.
- Stoyan, Yu. & Chugay, A., 2009. "Packing cylinders and rectangular parallelepipeds with distances between them into a given region," European Journal of Operational Research, Elsevier, vol. 197(2), pages 446-455, September.
- Li, S.P & Ng, Ka-Lok, 2003. "Monte Carlo study of the sphere packing problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 321(1), pages 359-363.
More about this item
Keywords
sphere packing; radiosurgical treatment planning; NP-hardness; dynamic programming;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:3:y:1999:i:4:d:10.1023_a:1009831621621. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.