IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v321y2003i1p359-363.html
   My bibliography  Save this article

Monte Carlo study of the sphere packing problem

Author

Listed:
  • Li, S.P
  • Ng, Ka-Lok

Abstract

We employ the Monte Carlo method to study a constrained optimization problem, that is packing spheres with unequal radii into a 3-D bounded region. Selection of the best fit solution is based on using the Boltzmann factor, e−ΔE/T to determine the transition probability, which allows us to search for the global optimal solution. We determined the least numbers of packed spheres that will occupy the largest volume. The optimal occupied volume found is around 44% of a bounded region volume, which is obtained within a relative short computing time. This suggests that our result could be able to give a good starting point for the radiosurgery treatment plan.

Suggested Citation

  • Li, S.P & Ng, Ka-Lok, 2003. "Monte Carlo study of the sphere packing problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 321(1), pages 359-363.
  • Handle: RePEc:eee:phsmap:v:321:y:2003:i:1:p:359-363
    DOI: 10.1016/S0378-4371(02)01798-3
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437102017983
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(02)01798-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jie Wang, 1999. "Packing of Unequal Spheres and Automated Radiosurgical Treatment Planning," Journal of Combinatorial Optimization, Springer, vol. 3(4), pages 453-463, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yeboah, S.K. & Darkwa, J., 2016. "A critical review of thermal enhancement of packed beds for water vapour adsorption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1500-1520.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bortfeldt, Andreas & Wäscher, Gerhard, 2013. "Constraints in container loading – A state-of-the-art review," European Journal of Operational Research, Elsevier, vol. 229(1), pages 1-20.
    2. Hifi, Mhand & Yousef, Labib, 2019. "A local search-based method for sphere packing problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 482-500.
    3. Andreas Fischer & Igor Litvinchev & Tetyana Romanova & Petro Stetsyuk & Georgiy Yaskov, 2023. "Quasi-Packing Different Spheres with Ratio Conditions in a Spherical Container," Mathematics, MDPI, vol. 11(9), pages 1-19, April.
    4. A. Sutou & Y. Dai, 2002. "Global Optimization Approach to Unequal Global Optimization Approach to Unequal Sphere Packing Problems in 3D," Journal of Optimization Theory and Applications, Springer, vol. 114(3), pages 671-694, September.
    5. Stoyan, Yu. & Chugay, A., 2009. "Packing cylinders and rectangular parallelepipeds with distances between them into a given region," European Journal of Operational Research, Elsevier, vol. 197(2), pages 446-455, September.
    6. Jie Wang, 2000. "Medial Axis and Optimal Locations for Min-Max Sphere Packing," Journal of Combinatorial Optimization, Springer, vol. 4(4), pages 487-503, December.
    7. Evgueniia Doudareva & Kimia Ghobadi & Dionne Aleman & Mark Ruschin & David Jaffray, 2015. "Skeletonization for isocentre selection in Gamma Knife® Perfexion™," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 369-385, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:321:y:2003:i:1:p:359-363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.