Efficiency and Henig Efficiency for Vector Equilibrium Problems
Author
Abstract
Suggested Citation
DOI: 10.1023/A:1026418122905
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- M. Bianchi & N. Hadjisavvas & S. Schaible, 1997. "Vector Equilibrium Problems with Generalized Monotone Bifunctions," Journal of Optimization Theory and Applications, Springer, vol. 92(3), pages 527-542, March.
- K. L. Lin & D. P. Yang & J. C. Yao, 1997. "Generalized Vector Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 92(1), pages 117-125, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Le Phuoc Hai, 2021. "Ekeland variational principles involving set perturbations in vector equilibrium problems," Journal of Global Optimization, Springer, vol. 79(3), pages 733-756, March.
- Tran Van Su, 2018. "New optimality conditions for unconstrained vector equilibrium problem in terms of contingent derivatives in Banach spaces," 4OR, Springer, vol. 16(2), pages 173-198, June.
- X. H. Gong, 2007. "Connectedness of the Solution Sets and Scalarization for Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 133(2), pages 151-161, May.
- Gábor Kassay & Mihaela Miholca, 2015. "Existence results for vector equilibrium problems given by a sum of two functions," Journal of Global Optimization, Springer, vol. 63(1), pages 195-211, September.
- X. H. Gong & J. C. Yao, 2008. "Connectedness of the Set of Efficient Solutions for Generalized Systems," Journal of Optimization Theory and Applications, Springer, vol. 138(2), pages 189-196, August.
- Qiuying Li & Sanhua Wang, 2021. "Arcwise Connectedness of the Solution Sets for Generalized Vector Equilibrium Problems," Mathematics, MDPI, vol. 9(20), pages 1-9, October.
- Yu Han & Nan-jing Huang, 2018. "Existence and Connectedness of Solutions for Generalized Vector Quasi-Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 65-85, October.
- Jian-Wen Peng & Soon-Yi Wu & Yan Wang, 2012. "Levitin-Polyak well-posedness of generalized vector quasi-equilibrium problems with functional constraints," Journal of Global Optimization, Springer, vol. 52(4), pages 779-795, April.
- N. T. T. Huong & N. D. Yen, 2014. "The Pascoletti–Serafini Scalarization Scheme and Linear Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 559-576, August.
- Szilárd László, 2016. "Vector Equilibrium Problems on Dense Sets," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 437-457, August.
- L. P. Hai & L. Huerga & P. Q. Khanh & V. Novo, 2019. "Variants of the Ekeland variational principle for approximate proper solutions of vector equilibrium problems," Journal of Global Optimization, Springer, vol. 74(2), pages 361-382, June.
- Adela Capătă, 2011. "Existence results for proper efficient solutions of vector equilibrium problems and applications," Journal of Global Optimization, Springer, vol. 51(4), pages 657-675, December.
- Yangdong Xu & Pingping Zhang, 2018. "Connectedness of Solution Sets of Strong Vector Equilibrium Problems with an Application," Journal of Optimization Theory and Applications, Springer, vol. 178(1), pages 131-152, July.
- X. H. Gong, 2008. "Continuity of the Solution Set to Parametric Weak Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 139(1), pages 35-46, October.
- S. J. Li & Z. M. Fang, 2010. "Lower Semicontinuity of the Solution Mappings to a Parametric Generalized Ky Fan Inequality," Journal of Optimization Theory and Applications, Springer, vol. 147(3), pages 507-515, December.
- X. Gong, 2011. "Chebyshev scalarization of solutions to the vector equilibrium problems," Journal of Global Optimization, Springer, vol. 49(4), pages 607-622, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- N. Hadjisavvas & S. Schaible, 1998. "From Scalar to Vector Equilibrium Problems in the Quasimonotone Case," Journal of Optimization Theory and Applications, Springer, vol. 96(2), pages 297-309, February.
- X. H. Gong, 2008. "Continuity of the Solution Set to Parametric Weak Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 139(1), pages 35-46, October.
- X. H. Gong, 2007. "Connectedness of the Solution Sets and Scalarization for Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 133(2), pages 151-161, May.
- Mircea Balaj, 2022. "Scalar and vector equilibrium problems with pairs of bifunctions," Journal of Global Optimization, Springer, vol. 84(3), pages 739-753, November.
- Ren-you Zhong & Zhen Dou & Jiang-hua Fan, 2015. "Degree Theory and Solution Existence of Set-Valued Vector Variational Inequalities in Reflexive Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 527-549, November.
- B. Djafari Rouhani & B. Ahmadi Kakavandi, 2006. "Infinite Time-Dependent Network Equilibria with a Multivalued Cost Function," Journal of Optimization Theory and Applications, Springer, vol. 131(3), pages 405-415, December.
- M. Bianchi & R. Pini, 2002. "A Result on Localization of Equilibria," Journal of Optimization Theory and Applications, Springer, vol. 115(2), pages 335-343, November.
- Q. H. Ansari & I. V. Konnov & J. C. Yao, 2001. "Existence of a Solution and Variational Principles for Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 110(3), pages 481-492, September.
- Tran Van Su, 2018. "New optimality conditions for unconstrained vector equilibrium problem in terms of contingent derivatives in Banach spaces," 4OR, Springer, vol. 16(2), pages 173-198, June.
- Q. H. Ansari & J> C> Yao, 2000. "On Nondifferentiable and Nonconvex Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 106(3), pages 475-488, September.
- Sonia & Ratna Dev Sarma, 2023. "A topological approach for vector quasi-variational inequalities with set-valued functions," Computational Management Science, Springer, vol. 20(1), pages 1-13, December.
- Yu Han, 2018. "Lipschitz Continuity of Approximate Solution Mappings to Parametric Generalized Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 178(3), pages 763-793, September.
- J. Y. Fu, 2006. "Stampacchia Generalized Vector Quasiequilibrium Problems and Vector Saddle Points," Journal of Optimization Theory and Applications, Springer, vol. 128(3), pages 605-619, March.
- César Gutiérrez & Rubén López, 2020. "On the Existence of Weak Efficient Solutions of Nonconvex Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 880-902, June.
- Y. P. Fang & N. J. Huang, 2006. "Feasibility and Solvability for Vector Complementarity Problems1," Journal of Optimization Theory and Applications, Springer, vol. 129(3), pages 373-390, June.
- Junyi Fu & Sanhua Wang, 2013. "Generalized strong vector quasi-equilibrium problem with domination structure," Journal of Global Optimization, Springer, vol. 55(4), pages 839-847, April.
- G. Y. Chen & X. Q. Yang, 2002. "Characterizations of Variable Domination Structures via Nonlinear Scalarization," Journal of Optimization Theory and Applications, Springer, vol. 112(1), pages 97-110, January.
- Mircea Balaj, 2021. "Intersection theorems for generalized weak KKM set‐valued mappings with applications in optimization," Mathematische Nachrichten, Wiley Blackwell, vol. 294(7), pages 1262-1276, July.
- S. Li & M. Li, 2009. "Levitin–Polyak well-posedness of vector equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(1), pages 125-140, March.
- X.Q. Yang & J.C. Yao, 2002. "Gap Functions and Existence of Solutions to Set-Valued Vector Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 115(2), pages 407-417, November.
More about this item
Keywords
vector equilibrium problems; efficiency; Henig efficiency; scalarization; existence; connectedness;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:108:y:2001:i:1:d:10.1023_a:1026418122905. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.